DOI QR코드

DOI QR Code

Development and Evaluation of Trimodal Silver Paste for High-Frequency EMI Shielding Films with a Focus on Flexibility, Durability, and Shielding Characteristics

고주파 EMI 차폐 필름을 위한 트라이모달 실버 페이스트의 개발과 유연성, 내구성 및 차폐 특성에 대한 평가

  • Hyun Jin Nam (ICT device Packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Seonwoo Kim (ICT device Packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Yubin Kim (ICT device Packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Se-Hoon Park (ICT device Packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Moses Gu (Department of Semiconductor Engineering, Seoul National University of Science and Technology) ;
  • Su-Yong Nam (Department of Nanotechnology Engineering, Pukyong National University)
  • 남현진 (한국전자기술연구원 ICT디바이스패키징연구센터) ;
  • 김선우 (한국전자기술연구원 ICT디바이스패키징연구센터) ;
  • 김유빈 (한국전자기술연구원 ICT디바이스패키징연구센터) ;
  • 박세훈 (한국전자기술연구원 ICT디바이스패키징연구센터) ;
  • 구모세 (서울과학기술대학교 일반대학원 지능형반도체공학과) ;
  • 남수용 (부경대학교 나노융합공학과)
  • Received : 2024.08.14
  • Accepted : 2024.08.30
  • Published : 2024.09.30

Abstract

In the electromagnetic wave shielding material market, superior shielding performance in the high-frequency range, along with flexibility and durability, has emerged as critical requirements. The need for high-performance EMI (Electromagnetic Interference) films to address electromagnetic wave interference issues is growing, particularly in various industrial sectors such as smart electronic devices, automotive electronic systems, and communication equipment. In this study, a trimodal silver paste was developed and fabricated into an EMI film, with its performance evaluated. The developed silver paste, utilizing a modified epoxy binder, exhibited properties suitable for screen printing processes. The film demonstrated excellent shielding performance, with an average attenuation of -99 dB in the high-frequency range of the 5G spectrum (26.5 GHz to 40 GHz), and a shielding effectiveness of -90.3 dB at 33.6 GHz. Flexibility and durability tests showed that the film maintained its flexibility even at a curvature radius of 1 mm. In the bending cycle test, the resistance increased by approximately 25.5% from 0.51 Ω to 0.64 Ω after 10,000 cycles in the outer bending scenario, while in the inner bending scenario, the resistance decreased by about 3.6%, indicating reduced resistance to compressive stress.

전자기파 차폐 소재의 시장에서는 고주파 대역에서의 뛰어난 차폐 성능과 함께 유연성과 내구성이 중요한 요구사항으로 부각되고 있다. 특히 전자기파 간섭 문제를 해결하기 위해 고성능 EMI 필름의 필요성이 커지고 있으며, 이는 스마트 전자기기, 자동차 전장 시스템, 통신 장비 등 다양한 산업 분야에서 더욱 중요해지고 있다. 본 연구에서는 트라이모달 실버 페이스트를 개발하고 EMI 필름으로 제작하여 그 성능을 평가하였다. 개발된 실버 페이스트는 변성 에폭시 바인더를 사용하여 스크린 인쇄 공정에 적합한 물성을 갖추었으며, 5G 영역의 고주파 대역(26.5 GHz ~ 40 GHz)에서 차폐 성능이 평균 -99 dB로 우수함을 확인하였다. 특히 33.6 GHz에서 -90.3 dB의 차폐 효과를 보였다. 유연성 및 내구성 테스트 결과, 곡률반경 1 mm에서도 필름의 유연성을 유지하며 벤딩 사이클 시험에서 outer 벤딩의 경우 초기 저항이 0.51 Ω에서 10,000 사이클 후 0.64 Ω로 약 25.5% 증가하였고, inner 벤딩에서는 약 3.6% 감소하여 압축 응력에 대한 저항 감소를 확인하였다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2023년)에 의하여 연구되었음.

References

  1. D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang and Z. M. Li, "Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding", Adv. Funct. Mater., 25(4), 559-566 (2015).
  2. J. Jung, H. Lee, I. Ha, H. Cho, K. K. Kim, J. Kwon, P. Won, S. Hong and S. H. Ko, "Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications", ACS Appl. Mater. Interfaces, 9(51), 44609-44616 (2017).
  3. F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo and Y. Gogotsi, "Electromagnetic interference shielding with 2D transition metal carbides (MXenes)", Science, 353(6304), 1137-1140 (2016).
  4. Y. Bi, M. Ma, Y. Liu, Z. Tong, R. Wang, K. L. Chung, A. Ma, G. Wu, Y. Ma, C. He, P. Liu and L. Hu, "Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework", J. Colloid Interface Sci., 600, 209-218 (2021).
  5. C. Li, Z. Li, X. Qi, X. Gong, Y. Chen, Q. Peng, C. Deng, T. Jing and W. Zhong, "A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber", J. Colloid Interface Sci., 605, 13-22 (2022).
  6. W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen and G. Ji, "Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption", Nano-Micro Lett., 13, 1-14 (2021).
  7. S . Gao, G. Zhang, Y. Wang, X. Han, Y. Huang and P. Liu, "MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption", J. Mater. Sci. Technol., 88, 56-65 (2021).
  8. Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin and J. Tan, "Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding", Sci. Rep., 6(1), 25601 (2016).
  9. P. Das, S. Ganguly, I. Perelshtein, S. Margel and A. Gedanken, "Acoustic green synthesis of graphene-gallium nanoparticles and PEDOT:PSS hybrid coating for textile to mitigate electromagnetic radiation pollution", ACS Appl. Nano Mater., 5(1), 1644-1655 (2022).
  10. S. Ganguly, P. Das, A. Saha, M. Noked, A. Gedanken and S. Margel, "Mussel-inspired polynorepinephrine/MXene-based magnetic nanohybrid for electromagnetic interference shielding in X-band and strain-sensing performance", Langmuir, 38(12), 3936-3950 (2022).
  11. N. Wu, J. Qiao, J. Liu, W. Du, D. Xu and W. Liu, "Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads", Adv. Compos. Hybrid Mater., 1, 149-159 (2018).
  12. N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao and Z. Guo, "Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods", Carbon, 145, 433-444 (2019).
  13. Y. Han, Y. Liu, L. Han, J. Lin and P. Jin, "High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding", Carbon, 115, 34-42 (2017).
  14. L. Liang, P. Xu, Y. Wang, Y. Shang, J. Ma, F. Su, Y. Feng, C. He, Y. Wang and C. Liu, "Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management", Chem. Eng. J., 395, 125209 (2020).
  15. R. Asmatulu, P. K. Bollavaram, V. R. Patlolla, I. M. Alarifi and W. S. Khan, "Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding", Adv. Compos. Hybrid Mater., 3, 66-83 (2020).
  16. W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma and F. Chen, "Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties", ACS Nano, 12(5), 4583-4593 (2018).
  17. B. Zhao, C. Zhao, R. Li, S. M. Hamidinejad and C. B. Park, "Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly (vinylidene fluoride)/carbon composite films", ACS Appl. Mater. Interfaces, 9(24), 20873-20884 (2017).
  18. D. Lu, Z. Mo, B. Liang, L. Yang, Z. He, H. Zhu, Z. Tang and X. Gui, "Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding", Carbon, 133, 457-463 (2018).
  19. Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, K. Li, K. Xie, X. Li, Q. Fu, L. Cheng, L. Zhang and B. Wei, "Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding", Adv. Mater., 29(31), 1701583 (2017).
  20. G. M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi and A. D. Taylor, "Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding", Adv. Funct. Mater., 28(44), 1803360 (2018).
  21. Y. Zhan, C. Santillo, Y. Meng and M. Lavorgna, "Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding", J. Mater. Chem. C, 11(3), 859-892 (2023).
  22. B. C. Tappan, S. A. Steiner III and E. P. Luther, "Nanoporous metal foams", Angew. Chem. Int. Ed., 49(27), 4544-4565 (2010).
  23. G. H. Lim, N. Kwon, E. Han, S. Bok, S. E. Lee and B. Lim, "Flexible nanoporous silver membranes with unprecedented high effectiveness for electromagnetic interference shielding", J. Ind. Eng. Chem., 93, 245-252 (2021).
  24. N. C. Das, Y. Liu, K. Yang, W. Peng, S. Maiti and H. Wang, "Single-walled carbon nanotube/poly (methyl methacrylate) composites for electromagnetic interference shielding", Polym. Eng. Sci., 49(8), 1627-1634 (2009).
  25. A. P. Singh, M. Mishra, A. Chandra and S. K. Dhawan, "Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application", Nanotechnology, 22(46), 465701 (2011).
  26. S. H. Lee, S. Yu, F. Shahzad, J. P. Hong, W. N. Kim, C. Park S. M. Hong and C. M. Koo, "Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding", Compos. Sci. Technol., 144, 57-62 (2017).
  27. J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang and W. G. Zheng, "Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding", ACS Appl. Mater. Interfaces, 5(7), 2677-2684 (2013).
  28. D. X. Yan, P. G. Ren, H. Pang, Q. Fu, M. B. Yang and Z. M. Li, "Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite", J. Mater. Chem., 22(36), 18772-18774 (2012).
  29. J. M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen and C. Detrembleur, "Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials", Mater. Sci. Eng. R Rep., 74(7), 211-232 (2013).
  30. Y. Ahn, Y. Jeong and Y. Lee, "Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide", ACS Appl. Mater. Interfaces, 4(12), 6410-6414 (2012).
  31. S. Choi, S. I. Han, D. Jung, H. J. Hwang, C. Lim, S. Bae, O. K. Park, C. M. Tschabrunn, M. Lee, S. Y. Bae, J. W. Yu, J. H. Ryu, S. W. Lee, K. Park, P. M. Kang, W. B. Lee, R. Nezafat, T. Hyeon and D. H. Kim, "Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics", Nat. Nanotechnol., 13(11), 1048-1056 (2018).
  32. Z. Chen, S. Ye, I. E. Stewart and B. J. Wiley, "Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance", ACS Nano, 8(9), 9673-9679 (2014).
  33. A. Sedighi, M. Montazer and N. Hemmatinejad, "Copper nanoparticles on bleached cotton fabric: in situ synthesis and characterization", Cellulose, 21, 2119-2132 (2014).
  34. T. Agcayazi, K. Chatterjee, A. Bozkurt and T. K. Ghosh, "Flexible interconnects for electronic textiles", Adv. Mater. Technol., 3(10), 1700277 (2018).
  35. H. J. Nam, W. Lee, Y. Kim, M. S hin, S . H. Park and J. H. Lee, "Rapid curing of printed pattern by UV irradiation and enhanced electrical conductivity in the flexible pattern consisting of Cu@Ag particles by successive photonic sintering", Prog. Org. Coat., 193, 108546 (2024).
  36. Y. Singh, "Electrical resistivity measurements: a review", Int. J. Mod. Phys. Conf. Ser., 22, 745-756 (2013).
  37. H. Xue, J. S. Kyoung and Y. S. Woo, "Study on Structural Changes and Electromagnetic Interference Shielding Properties of Ti-based MXene Materials by Heat Treatment", J. Microelectron. Packag. Soc., 30(3),111-118 (2023).
  38. S. H. Park, M. Kim and K. S. Kim, "Research Trends of Carbon Composite Film with Electromagnetic Interference Shielding and High Heat Dissipation", J. Microelectron. Packag. Soc., 28(4), 1-10 (2021).
  39. J. Hong, J. Kwon, D. Im, J. Ko, C. Y. Nam, H. G. Yang, S. H. Shin, S. M. Hong, S. S. Hwang, H. G. Yoon and A. S. Lee, "Best practices for correlating electrical conductivity with broadband EMI shielding in binary filler-based conducting polymer composites", J. Chem. Eng., 455, 140528 (2023).
  40. S. I. Chung, T. W. Kang, P. K. Kim, T. G. Ha, Y. P. Hong, "Highly Transparent Ka-/W-Band Electromagnetic Shielding Films Based on Double-Layered Metal Meshes", ACS Appl. Mater. Interfaces., 15(48), 56612-56622 (2023).
  41. H. Lim, J. Oh and J. W. Kim, "Technical Trends of Flexible, Transparent Electromagnetic Interference Shielding Film", J. Microelectron. Packag. Soc., 28(1), 21-29 (2021).
  42. R. Li, "Influence of additional tensile force on the stress and deformation of numerically controlled tube bending", Int. J. Adv. Manuf. Technol., 78(5), 895-905 (2015).
  43. R. Meya, C. Lobbe and A. E. Tekkaya, "Stress state analysis of radial stress superposed bending", Int. J. Precis. Eng. Manuf., 20, 53-66 (2019).