DOI QR코드

DOI QR Code

Hierarchical SnO2 Nanoflakes Integrated with Carbon Nanofibers as an Advanced Anode Material for High-Performance Lithium-Ion Batteries

  • Ying Liu (Department of Chemical Engineering, Gyeongsang National University) ;
  • Jungwon Heo (Department of Chemical Engineering, Gyeongsang National University) ;
  • Dong-Ho Baek (Department of Chemical Engineering, Gyeongsang National University) ;
  • Dengzhou Liu (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Dirfan Zabrian (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Mingxu Li (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Prasanth Raghavan (Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology) ;
  • Jae-Kwang Kim (Department of Energy Convergence Engineering, Cheongju University) ;
  • Jou-Hyeon Ahn (Department of Chemical Engineering, Gyeongsang National University)
  • Received : 2024.07.04
  • Accepted : 2024.08.09
  • Published : 2024.09.30

Abstract

Lithium-ion batteries (LIBs) have attracted significant attention as potential energy storage solutions due to their high energy density, minimal self-discharge, extended cycle life, and absence of memory effects. However, conventional LIBs use graphite as the anode material and as a result struggle to meet the increasing demand for higher energy density because of the low theoretical capacity of graphite. In order to enhance Li storage capacity and address the current limitations of LIBs, this study designed and analyzed SnO2 nanoflakes/CNF, which is an advanced anode material with a unique hierarchical structure synthesized via a facile method involving incipient wetness followed by annealing. The in-situ formed SnO2 nanoflakes improve the electrolyte accessibility and shorten the ion and electron transport pathways, thereby enhancing the reaction kinetics. Additionally, the CNF matrix enhances the electrical conductivity, accelerates electron transport, and mitigates volume changes. The integrated SnO2 nanoflakes/CNF cell demonstrated outstanding cycling performance and excellent rate capability, achieving a notable reversible capacity of 636 mAh g-1 after 100 cycles at 0.1 C. This study provides valuable insights into the design of high-efficiency anode materials for the advancement of high-performance LIBs.

Keywords

Acknowledgement

This research was supported by 'regional innovation mega project' program through the Korea Innovation Foundation funded by Ministry of Science and ICT (Project Number: 2023-DD-UP-0026) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00217581).

References

  1. Xia, Q., Ni, M., Chen, M., and Xia, H., "Low-temperature Synthesized Self-supported Single-crystalline LiCoO2 Nanoflake Arrays as Advanced 3D Cathodes for Flexible Lithium-ion Batteries," J. Mater. Chem. A, 7, 6187-6196 (2019).
  2. Autthawong, T., Yodbunork, C., Ratsameetammajak, N., Namsar, O., Chimupala, Y., and Sarakonsri, T., "Enhanced Electrochemical Performance of Sn(SnO2)/TiO2(B) Nanocomposite Anode Materials with Ultrafast Charging and Stable Cycling for High-performance Lithium-ion Batteries," ACS Appl. Energy Mater., 5, 13829-13842 (2022).
  3. Kim, Y. B. and Park, G. D., "Synthesis of Porous-structured (Ni, Co)Se2-CNT Microsphere and Its Electrochemical Properties as Anode for Sodium-ion Batteries," Clean Technol., 29, 178-184 (2023).
  4. Zhu, Y., Huang, Y., and Wang, M., "Three-dimensional Hierarchical Porous MnCo2O4@MnO2 Network towards Highly Reversible Lithium Storage by Unique Structure," Chem. Eng. J., 378, 122207 (2019).
  5. Sun, C. R. and Kim, J. H., "Development of Bismuth Alloy-based Anode Material for Lithium Ion Battery," Clean Technol., 30, 23-27 (2024).
  6. Li, Q., Li, H., Xia, Q., Hu, Z., Zhu, Y., Yan, S., Ge, C., Zhang, Q., Wang, X., Shang, X., Fan, S., Long, Y., Gu, L., Miao, G., Yu, G., and Moodera, J. S., "Extra Storage Capacity in Transition Metal Oxide Lithium-ion Batteries Revealed by in situ Magnetometry," Nat. Mater., 20, 76-83 (2021).
  7. Zhang, J. and Yu, A., "Nanostructured Transition Metal Oxides as Advanced Anodes for Lithium-ion Batteries," Sci. Bull., 60, 823-838 (2015).
  8. Fang, S., Bresser, D., and Passerini, S., "Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-ion Batteries," Adv. Energy Mater., 10, 1902485 (2020).
  9. Zhou, S., Zhou, H., Zhang, Y., Zhu, K., Zhai, Y., Wei, D., and Zeng, S., "SnO2 Anchored in S and N co-doped Carbon as the Anode for Long-life Lithium-ion Batteries," Nanomaterials, 12, 700 (2022).
  10. Cheng, Y., Wang, S., Zhou, L., Chang, L., Liu, W., Yin, D., Yi, Z., and Wang, L., "SnO2 Quantum Dots: Rational Design to Achieve Highly Reversible Conversion Reaction and Stable Capacities for Lithium and Sodium Storage," Small, 16, 2000681 (2020).
  11. Lu, Z., Kong, Z., Jing, L., Wang, T., Liu, X., Fu, A., Guo, P., Guo, Y., and Li, H., "Porous SnO2/graphene Composites as Anode Materials for Lithium-ion Batteries: Morphology Control and Performance Improvement," Energ. Fuel., 34, 13126-13136 (2020).
  12. Wang, X., Zheng, T., Cheng, Y., Yin, S., Xia, Y., Ji, Q., Xu, Z., Liang, S., Ma, L., Zuo, X., Meng, J., Zhu, J., and Muller-Buschbaum, P., "SnO2/Sn/Carbon Nanohybrid Lithium-ion Battery Anode with High Reversible Capacity and Excellent Cyclic Stability," Nano Select, 2, 642-653 (2021).
  13. Zhang, Y., Li, D., Qin, L., Zhao, P., Liu, F., Chuai, X., Sun, P., Liang, X., Gao, Y., Sun, Y., and Lu, G., "Preparation and Gas Sensing Properties of Hierarchical Leaf-like SnO2 Materials," Sensor. Actuat. B-Chem., 255, 2944-2951 (2018).
  14. Madhu, S., Ramasamy, S., Magudeeswaran, V., Manickam, P., Nagamony, P., and Chinnuswamy, V., "SnO2 Nanoflakes Deposited Carbon Yarn-based Electrochemical Immunosensor towards Cortisol Measurement," J. Nanostructure Chem., 13, 115-127 (2023).
  15. Narsimulu, D., Naresh, N., Rao, B. N., and Satyanarayana, N., "Rational Design of SnO2 Nanoflakes as a Stable and High Rate Anode for Lithium-ion Batteries," J. Mater. Sci.-Mater. El., 31, 8556-8563 (2020).
  16. Park, J. S., Jo, J. H., Yashiro, H., Kim, S., Kim, S., Sun, Y., and Myung, S. T., "Synthesis and Electrochemical Reaction of Tin Oxalate-reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries," ACS Appl. Mater. Interf., 9, 25941-25951 (2017).
  17. Ambalkar, A. A., Panmand, R. P., Kawade, U. V., Sethi, Y. A., Naik, S. D., Kulkarni, M. V., Adhyapak, P. V., and Kale, B. B., "Facile Synthesis of SnO2@carbon Nanocomposites for Lithiumion Batteries," New J. Chem., 44, 3366-3374 (2020).
  18. Ma, C., Jiang, J., Xu, T., Ji, H., Yang, Y., and Yang, G., "Freezedrying-assisted Synthesis of Porous SnO2/rGO Xerogels as Anode Materials for Highly Reversible Lithium/sodium Storage," ChemElectroChem, 5, 2387-2394 (2018).
  19. Cheng, Y., Huang, J., Qi, H., Cao, L., Luo, X., Li, J., Xu, Z., and Yang, J., "Controlling the Sn-C bonds Content in SnO2@CNTs Composite to Form in situ Pulverized Structure for Enhanced Electrochemical Kinetics," Nanoscale, 9, 18681-18689 (2017).
  20. Jung, S. M., Kim, D. W., and Jung, H. Y., "Unconventional Capacity Iincrease Kinetics of a Chemically Engineered SnO2 Aerogel Anode for Long-term Stable Lithium-ion Batteries," J. Mater. Chem. A, 8, 8244-8254 (2020).
  21. Sun, J., Xiao, L., Jiang, S., Li, G., Huang, Y., and Geng, J., "Fluorine-doped SnO2@graphene Porous Composite for High Capacity Lithium-ion Batteries," Chem. Mater., 27, 4594-4603 (2015).
  22. Cheng, Y., Xie, H., Yu, F., Zhang, J., Wang, Y., Luo, X., Shi, B., and Liu, B., "Facile Fabrication of Three-dimensional Porous Carbon Embedded with SnO2 Nanoparticles as a High-performance Anode for Lithium-ion Battery," Ionics, 27, 4143-4151 (2021).
  23. Zhan, L., Zhou, X., Luo, J., and Ning, X., "Binder-free Multilayered SnO2/graphene on Ni Foam as a High-performance Lithium Ion Batteries Anode," Ceram. Int., 45, 6931-6936 (2019).
  24. Wang, M., Wang, X., Yao, Z., Tang, W., Xia, X., Gu, C., and Tu, J., "SnO2 Nanoflake Arrays Coated with Polypyrrole on a Carbon Cloth as Flexible Anodes for Sodium-Ion Batteries," ACS Appl. Mater. Interfaces, 11, 24198-24204 (2019).
  25. Wang, Z., Chen, L., Feng, J., Liu, S., Wang, Y., Fan, Q., and Zhao, Y., "In-situ Grown SnO2 Nanospheres on Reduced GO Nanosheets as Advanced Anodes for Lithium-ion Batteries," ChemistryOpen, 8, 712-718 (2019).
  26. Chen, J. S., Cheah, Y. L., Chen, Y. T., Jayaprakash, N., Madhavi, S., Yang, Y. H., and Lou, X. W., "SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-capacity Anode Materials for Lithium-ion Batteries," J. Phys. Chem. C, 113, 20504-20508 (2009).
  27. Tian, Z., Zhao, J., Li, B., Feng, Y., Song, J., Niu, C., Shao, L., and Zhang, W., "Controllable Synthesis of 3D Porous SnO2/carbon towards Enhanced Lithium-ion Batteries," Ionics, 26, 2773-2779 (2020).
  28. Liang, J., Yu, X. Y., Zhou, H., Wu, H. B., Ding, S., and Lou, X. W., "Bowl-like SnO2@carbon Hollow Particles as an Advanced Anode Material for Lithium-ion Batteries," Angew. Chem. Int. Ed., 53, 12803-12807 (2014).
  29. Liu, M., Zhang, S., Dong, H., Chen, X., Gao, S., Sun, Y., Li, W., Xu, J., Chen, L., Yuan, A., and Lu, W., "Nano-SnO2/carbon Nanotube Hairball Composite as a High-capacity Anode Material for Lithium Ion Batteries," ACS Sustainable Chem. Eng., 7, 4195-4203 (2019).
  30. Zhang, B., Zheng, Q. B., Huang, Z. D., Oh, S. W., and Kim, J. K., "SnO2-graphene-Carbon Nanotube Mixture for Anode Material with Improved Rate Capacities," Carbon, 49, 4524-4534 (2011).
  31. Chen, T., Pan, L., Liu, X., Yu, K., and Sun, Z., "One-step Synthesis of SnO2-reduced Graphene Oxide-carbon Nanotube Composites via Microwave Assistance for Lithium Ion Batteries," RSC Adv., 2, 11719-11724 (2012).
  32. Zhang, Z., Wang, L., Xiao, J., Xiao, F., and Wang, S., "One-pot Synthesis of Three-Dimensional Graphene/carbon Nanotube/SnO2 Hybrid Architectures with Enhanced Lithium Storage Properties," ACS Appl. Mater. Interf., 7, 17963-17968 (2015).
  33. Zhu, X., Zhu, Y., Murali, S., Stoller, M. D., and Ruoff, R. S., "Reduced Graphene Oxide/tin Oxide Composite as an Enhanced Anode Material for Lithium Ion Batteries Prepared by Homogenous Coprecipitation," J. Power Sources, 196, 6473-6477 (2011).
  34. Sahoo, M. and Ramaprabhu, S., "Solar Synthesized Tin Oxide Nanoparticles Dispersed on Graphene Wrapped Carbon Nanotubes as a Li Ion Battery Anode Material with Improved Stability," RSC Adv., 7, 13789-13797 (2017).
  35. Liu, Y., Li, X., Haridas, A. K., Sun, Y., Heo, J., Ahn, J. H., and Lee, Y., "Biomass-Derived Graphitic Carbon Encapsulated Fe/Fe3C Composite as an Anode Material for High-performance Lithium Ion Batteries," Energies, 13, 827 (2020).
  36. Liu, Y., Ju, H. C., Cho, K. K., Ahn, H. J., and Ahn, J. H., "Grape-cluster-like Hierarchical Structure of FeS2 Encapsulated in Graphitic Carbon as Cathode Material for High-rate Lithium Batteries," Appl. Surf. Sci., 630, 157458 (2023).