DOI QR코드

DOI QR Code

Optimization Study to Minimize Trigonelline and Chlorogenic acid Loss in the Coffee Decaffeination Process through Supercritical Fluid Extraction

초임계 추출을 통한 커피 디카페인 과정에서의 트리고넬린과 클로로겐산 손실 최소화를 위한 최적화 연구

  • Ji Sun Lim (Korea Institue of Industrial Technology) ;
  • Seung Eun Lee (Korea Institue of Industrial Technology) ;
  • Seong Jun Kim (JARDIN CO., LTD) ;
  • Bonggeun Shong (Department of Chemical Engineering, Hongik University) ;
  • Young-Kwon Park (School of Environmental Engineering, University of Seoul) ;
  • Hong-shik Lee (Korea Institue of Industrial Technology)
  • 임지선 (한국생산기술연구원) ;
  • 이승은 (한국생산기술연구원) ;
  • 김성준 ((주)쟈뎅) ;
  • 송봉근 (홍익대학교 화학공학과) ;
  • 박영권 (서울시립대학교 환경공학과) ;
  • 이홍식 (한국생산기술연구원)
  • Received : 2024.06.08
  • Accepted : 2024.07.10
  • Published : 2024.09.30

Abstract

This study investigated the optimal conditions for efficiently removing caffeine from green coffee beans using supercritical fluid extraction while preserving the key flavor compounds, trigonelline and chlorogenic acid. The results of the experiments conducted under various pretreatment and supercritical fluid extraction conditions revealed that the highest caffeine extraction rate was 90.6% and it was achieved when green coffee beans with a moisture content of 35% were soaked in hot water. However, this condition also showed a tendency to slightly reduce the retention rates of trigonelline and chlorogenic acid. In the supercritical fluid extraction time experiments, the caffeine content decreased as the extraction time increased. Furthermore, extraction at a temperature of 60 ℃ and a pressure of 40 MPa was the most effective in terms of both caffeine removal and flavor compound preservation. As the amount of water added increased, the caffeine extraction rates increased, but there was also an increase in the loss of flavor compounds. With an increase in the solvent-to-material ratio, the caffeine removal rates improved. The optimal results were observed at a ratio of 250, which achieved a caffeine extraction rate of 91.0% and retention rates of trigonelline and chlorogenic acid of 99.9% and 85.9%, respectively.

본 연구는 초임계 추출법을 이용하여 커피 생두에서 카페인을 효율적으로 제거하면서도 주요 향미 성분인 트리고넬린과 클로로겐산을 보존하는 최적의 조건을 찾고자 하였다. 다양한 전처리 조건과 초임계 추출 조건을 통해 실험한 결과, 수분 함량이 35%인 생두를 열수 불림하였을 때 카페인 추출률이 90.6%로 가장 높았고, 트리고넬린과 클로로겐산의 보존율은 다소 낮아지는 경향을 보였다. 초임계 추출 시간에 따른 실험에서는 시간이 증가함에 따라 카페인 함량이 감소하였고, 온도와 압력이 60 ℃와 40 MPa 일 때의 조건에서 추출한 생두가 카페인 제거와 향미 성분 보존에 가장 효과적이었다. 물의 투입량이 높아짐에 따라 카페인 추출률이 높아졌으나, 향미 성분의 손실도 증가하는 경향이 나타났다. 용매-원료 비가 증가함에 따라 카페인 제거율은 상승하였고, 특히 용매-원료 비가 250인 조건에서 카페인 추출률 91.0%와 트리고넬린 및 클로로겐산 보존율이 각각 99.9% 및 85.9%로 최적의 결과를 보였다.

Keywords

Acknowledgement

본 연구는 2022년도 중소벤처기업부의 기술개발사업 지원에 의한 연구이다[S3245287].

References

  1. Ministry of Food and Drug Safety, https://www.mfds.go.kr/index.do, accessed on September 23, 2024.
  2. Marco, I. D., Riemma, S., and Iannone, R., "Life Cycle Assessment of Supercritical CO2 Extraction of Caffeine from Coffee Beans," J. Supercrit. Fluids, 133, 393-400 (2018).
  3. Marco, I. D., Riemma, S., and Iannone, R., "Supercritical Carbon Dioxide Decaffeination Process: a Life Cycle Assessment Study," in CHEMICAL ENGINEERING TRANSACTIONS (2017).
  4. Menzio, J., Binello, A., Barge, A., and Cravotto, G., "Highly-efficient Caffeine Recovery from Green Coffee Beans under Ultrasound-assisted SC-CO2 Extraction," Processes, 8(9), 1062 (2020).
  5. Lee, S., Yun, J., and Chun, B., "Fatty Acid Composition and Oxidative Properties of Anchovy Oil Extracted by Supercritical Carbon Dioxide," Clean Technol., 17(3), 266-272 (2011).
  6. Kim, D. W., Heo, H., and Lim, K. T., "Study of Supercritical Carbon Dioxide/n-Butyl Acetate Co-solvent System with High Selectivity in Photoresist Removal Process," Clean Technol., 23(4), 357-363 (2017).
  7. Pourmortazavi, S. M. and Hajimirsadeghi, S. S., "Supercritical Fluid Extraction in Plant Essential and Volatile Oil Analysis," J. Chromatog. A, 1163(1-2), 2-24 (2007).
  8. Park, J., Cho, Y., Jeong, Y., and Chun, B., "Quality Properties of Conger Eel (Conger myriaster) Oils Extracted by Supercritical Carbon Dioxide and Conventional Methods," Clean Technol., 25(4), 275-282 (2019).
  9. Shin, E. M., Joo, Y. E., Jung, S. M., Suh, J., and Kim, C., "Separation of Antioxidants and Glucose from Grape Skin Extract Using Polyethylene Glycol and Sodium Citrate," Clean Technol., 29(2), 109-117 (2023).
  10. Hasan, N. and Farouk, B., "Mass Transfer Enhancement in Supercritical Fluid Extraction by Acoustic Waves," J. Supercrit. Fluids, 80, 60-70 (2013).
  11. Araujo, M. N., Azevedo, A. Q. P. L., Hamerski, F., Voll, F. A. P., and Corazza, M. L., "Enhanced Extraction of Spent Coffee Grounds Oil using High-pressure CO2 Plus Ethanol Solvents," Ind. Crops Prod., 141, 111723 (2019).
  12. Azevedo, A. B. A. D., Mazzafera, P., Mohamed, R. S., Melo, S. A. B. V. D., and Kieckbusch, T. G., "Extraction of Caffeine, Chlorogenic Acids and Lipids from Green Coffee Beans Using Supercritical Carbon Dioxide and CO-Solvents," Braz. J. Chem. Eng., 25(03), 543-552 (2008).
  13. MacHmudah, S., Kitada, K., Sasaki, M., Goto, M., Munemasa, J., and Yamagata, M., "Simultaneous Extraction and Separation Process for Coffee Beans with Supercritical CO2 and Water," Ind. Eng. Chem. Res., 50(4), 2227-2235 (2011).
  14. Peker, H., Srinivasan, M. P., Smith, J. M., and McCoy, B. J., "Caffeine Extraction Rates from Coffee Beans with Supercritical Carbon Dioxide," AIChE J., 38(5), 761-770 (1992).
  15. Baldino, L., Scognamiglio, M., and Reverchon, E., "Elimination of Tryptamines from Green Coffee by Supercritical CO2 Extraction," Can. J. Chem. Eng., 99(6), 1345-1351 (2021).
  16. Atlabachew, M., Abebe, A., Wubieneh, T. A., and Habtemariam, Y. T., "Rapid and Simultaneous Determination of Trigonelline, Caffeine, and Chlorogenic Acid in Green Coffee Bean Extract," Food Sci. Nut., 9(9), 5028-5035 (2021).
  17. Jeszka-Skowron, M., Frankowski, R., and Zgola-Grzeskowiak, A., "Comparison of Methylxantines, Trigonelline, Nicotinic Acid and Nicotinamide Contents in Brews of Green and Processed Arabica and Robusta Coffee Beans - Influence of Steaming, Decaffeination and Roasting Processes on Coffee Beans," LWT, 125, 109344 (2020).
  18. Mediani, A., Kamal, N., Lee, S. Y., Abas, F., and Farag, M. A., "Green Extraction Methods for Isolation of Bioactive Substances from Coffee Seed and Spent," Sep. Purif. Rev., 52(1), 24-42 (2023).
  19. Maria, C. A. B. D., Trugo, L. C., Neto, F. R. A., Moreira, R. F. A., and Alviano, C. S., "Composition of Green Coffee Water-soluble Fractions and Identification of Volatiles Formed during Roasting," Food Chem., 55(3), 203-207 (1996).
  20. Heo, J., Adhikari, K., Choi, K. S., and Lee, J., "Analysis of Caffeine, Chlorogenic Acid, Trigonelline, and Volatile Compounds in Cold Brew Coffee using High-performance Liquid Chromatography and Solid-phase Microextraction-gas Chromatography-mass Spectrometry," Foods, 9(12), 1746 (2020). https://doi.org/10.3390/foods9121746.
  21. Vitaglione, P., Fogliano, V., and Pellegrini, N., "Coffee, Colon Function and Colorectal Cancer," in Food and Function, 3, 916-922 (2012).
  22. Ludwig, I. A., Clifford, M. N., Lean, M. E. J., Ashihara, H., and Crozier, A., "Coffee: Biochemistry and Potential Impact on Health," Food Func., 5(8), 1695-1717 (2014).
  23. Dijk, A. E. V., Olthof, M. R., Meeuse, J. C., Seebus, E., Heine, R. J., and Dam, R. M. V., "Acute Effects of Decaffeinated Coffee and the Major Coffee Components Chlorogenic Acid and Trigonelline on Glucose Tolerance," Diabetes Care, 32(6), 1023-1025 (2009).
  24. Santo, A. T. E., Siqueira, L. M., Almeida, R. N., Vargas, R. M. F., Franceschini, G. N., Kunde, M. A., Cappellari, A. R., Morrone, F. B., and Cassel, E., "Decaffeination of Yerba Mate by Supercritical Fluid Extraction: Improvement, Mathematical Modelling and Infusion Analysis," J. Supercrit. Fluids, 168, 105096 (2021).
  25. Prokopchuk, D. I., Kostenko, M. O., and Pokrovskiy, O. I., "Spontaneous Precipitation of Caffeine from Supercritical Extracts of Roasted Coffee Beans," Theoret. Found. Chem. Eng., 55(5), 1010-1015 (2021).
  26. Honda, M., Takezaki, D., Tanaka, M., Fukaya, M., and Goto, M., "Effect of Roasting Degree on Major Coffee Compounds: A Comparative Study between Coffee Beans with and without Supercritical CO2 Decaffeination Treatment," J. Oleo Sci., 71(10), 1541-1550 (2022).
  27. Peker, H., Srinivasan, M. P., Smith, J. M., and McCoy, B. J., "Caffeine Extraction Rates from Coffee Beans with Supercritical Carbon Dioxide," AIChE J., 38(5), 761-770 (1992).
  28. Tello, J., Viguera, M., and Calvo, L., "Extraction of Caffeine from Robusta Coffee (Coffea canephora var. Robusta) Husks using Supercritical Carbon Dioxide," J. Supercrit. Fluids, 59, 53-60 (2011).
  29. Bamberger, A., Sieder, G., and Maurer, G., "High-pressure (vapor+liquid) Equilibrium in Binary Mixtures of (carbon dioxide+water or acetic acid) at Temperatures from 313 to 353 K," J. Supercrit. Fluids, 17, 97-110 (2000).
  30. Park, H. S., Lee, H. J., Shin, M. H., Lee, K., Lee, H., Kim, Y., Kim, K. O., and Kim, K. H., "Effects of Cosolvents on the Decaffeination of Green Tea by Supercritical Carbon Dioxide," Food Chem., 105(3), 1011-1017 (2007).
  31. Machmudah, S., Kitada, K., Sasaki, M., Goto, M., Munemasa, J., and Yamagata, M., "Caffeine and Chlorogenic Acid Separation from Raw Coffee Beans using Supercritical CO2 in Water," Ind. Eng. Chem. Res. (2008).