DOI QR코드

DOI QR Code

NiO가 장식된 In2O3 Nanorods의 HCHO 감지 특성 향상

Enhanced HCHO Sensing Performance of NiO-decorated In2O3 Nanorods

  • 박시온 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 김영훈 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 장유준 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 김유진 (한국기술교육대학교 전기.전자.통신공학부) ;
  • 한수현 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 정재한 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 심영석 (한국기술교육대학교 에너지신소재화학공학부)
  • Zion Park (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Younghun Kim (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Youjune Jang (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Yujin Kim (School of Electrical, Electronics & Communication Engineering, Korea University of Technology and Education) ;
  • Soohyun Han (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Jae Han Chung (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Young-Seok Sim (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 투고 : 2024.09.02
  • 심사 : 2024.09.11
  • 발행 : 2024.09.30

초록

Formaldehyde (HCHO) is a major primary indoor air pollutant with various adverse effects on the human body, includingsuch as sick building syndrome, lung cancer, and nasal cancer. Therefore, gas sensors for effective HCHO detection detecting HCHO are crucial for maintaining a healthy indoor environments, and research is being conducted to develop high-performance sensors for this purpose. AnOne of the effective methods for enhancing the to enhance sensing properties is involves modifying the p-n heterojunction structure, which improves sensing through via electronic sensitization based on the expanded depletion region and chemical sensitization that dissociates specific gases. In this studyHerein, weWe fabricated NiO-decorated In2O3 NRs using an e-beam evaporator based on the glancing angle deposition technique by optimizing the NiO thickness (0, 1, 2, and 3 nm). When exposed to 50 ppm HCHO, NiO-decorated In2O3 NRs showed a 3.91%-fold enhancement in the gas response (Ra/Rg-1= 23.9) and a 41.47% faster response time (40.7 s) than-compared to bare In2O3 NRs with an extremely low theoretical detection limit of ≈approximately 9.3 ppb.

키워드

과제정보

본 논문은 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도전문대학 육성사업(LINC 3.0)의 연구결과 입니다. 본 논문은 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신사업의 결과입니다(2021RIS-004). 이 논문은 한국기술교육대학교 산학협력단 공용장비센터의 지원으로 연구되었음.

참고문헌

  1. S.-H. Jin, "Manufacture of MEMS gas sensor for environmental hazardous gas detection", M. S. thesis, Wooseok University, Wanju, KR, 2019.
  2. T. Jeong, D. H. Lim, M. S. Kim, J. G. Lee, B. T. Yoo, and J. W. Ko, "Optimization of Gas Detector Location by Analysis of the Dispersion Model of Hazardous Chemicals", J. Korean Inst. Gas, Vol. 26, No. 2, pp. 39-48, 2022.
  3. J. K. Ko, I. H. Park, Y. S. Shim, K. Hong, and K. C. Kwon, "Recent Research Trends for Metal Oxide Nanostructures Based Chemoresistive Gas Sensors", Korean J. Met. Mater., Vol. 62, No. 2, pp. 142-153, 2024.
  4. A. A. C. Illahi, E. P. Dadios, A. A. Bandala, R. R. P. Vicerra, and E. Sybingco, "Automatic Harmful Gas Detection Using Electronic Nose Technology", Proc. of 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, pp. 1-4, 2021.
  5. Y. Masuda, "Recent advances in SnO2 nanostructure based gas sensors", Sens. Actuators B Chem., Vol. 364, p. 131876, 2022.
  6. S.-H. Kim and I. L. Jeon, "Recent Research Trend in Semiconductor-type Gas Sensors for toxic Gas Detection", Korean Inst. Electr. Eng., Vol. 72, No. 10, pp. 31-37, 2023.
  7. B. G. Yoon and Y. W. Choe, "Symptoms of Sick House Syndrome and a Study on the Removal of Hazardous Gas - Focusing on effective removal of formaldehyde", J. Public Policy Stud., Vol. 26, No. 1, pp. 51-70, 2019.
  8. S. H. Sim and Y. S. Kim, "Characterization and Assessment of Indoor Air Quality in Newly Constructed Apartments - Volatile organic compounds and formaldehyde", J. Environ. Health Sci., Vol. 32, No. 4, pp. 275-281, 2006.
  9. N. Yamazoe, "Toward innovations of gas sensor technology", Sens. Actuators B Chem., Vol. 108, No. 1-2, pp. 2-14, 2005.
  10. J. H. Lee, "Study on gas sensing characteristics of semiconductor gas sensor with micro pillar structure", Ph. D. thesis, Soonchunhyang University, Asan, KR, 2005.
  11. G. Hagen, J. Herrmann, X. Zhang, H. Kohler, I. Hartmann, and R. Moos, "Application of a Robust Thermoelectric Gas Sensor in Firewood Combustion Exhausts", Sens., Vol. 23, No. 6, p. 2930, 2023.
  12. S. B. Han and N. H. Kim, "A Study on the Improvement of Semiconductor Sensor Utilization Methods", Proc. of Korean Inst. Inf. Commun. Sci. Conf., pp. 62-64, Gunsan, Korea, 2021.
  13. M. V. Nikolic, V. Milovanovic, Z. Z. Vasiljevic, and Z. Stamenkovic, "Semiconductor Gas Sensors: Materials, Technology, Design, and Application", Sens., Vol. 20, No. 22, p. 6694, 2020.
  14. C. Liu, Q. Kuang, Z. Xie, and L. Zheng, "The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the gas sensing performance of SnO2-based sensors: a case study on the {221} high-index faceted SnO2 octahedra", CrystEngComm, Vol. 17, No. 33, pp. 6308-6313, 2015.
  15. Y. C. Qin, F. Q. Wang, X. M. Wang, M. W. Wang, W. L. Zhang, W. K. An, X. P. Wang, Y. L. Ren, X. Zheng, D.-C. Lv, and A. Ahmad, "Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion", Rare Met., Vol. 40, No. 9, pp. 2354-2368, 2021.
  16. J. Zhang, H. Lu, C. Liu, C. Chen, and X. Xin, "Porous NiO-WO3 heterojunction nanofibers fabricated by electrospinning with enhanced gas sensing properties", RSC Adv., Vol. 7, No. 64, pp. 40499-40509, 2017.
  17. N. M. Vuong, N. M. Hieu, D. Kim, B. I. Choi, and M. Kim, "Ni2O3 decoration of In2O3 nanostructures for catalytically enhanced methane sensing", Appl. Surf. Sci., Vol. 317, pp. 765-770, 2014.
  18. D. Meng, T. Qiao, G. Wang, Y. Shen, X. San, R. Li, and F. Meng, "Rational design of CuO/In2O3 heterostructures with flower-like structures for low temperature detection of formaldehyde", J. Alloys Compd., Vol. 896, p. 162959, 2022.
  19. M. J. Kim, Y.-J. Lee, H.-J. Ahn, and S. H. Lee, "Fabrication and Evaluation of the SnO2 Based Gas Sensor for CO and NOx Detection", Trans. Korean Soc. Automot. Eng., Vol. 23, No. 5, pp. 515-523, 2015.
  20. B. Saruhan, R. Lontio Fomekong, and S. Nahirniak, "Review: Influences of Semiconductor Metal Oxide Properties on Gas Sensing Characteristics", Front. Sens., Vol. 2, p. 657931, 2021.
  21. N. Yamazoe and K. Shimanoe, "Receptor function and response of semiconductor gas sensor", J. Sens., Vol. 2009, p. 875704, 2009.