Acknowledgement
This work was supported by 1) BK21-FOUR programs of the Ministry of Education and Human-Resource Development, South Korea; 2) National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2021R1A2C2008447); 3) "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (MOE) (2023RIS-008).
References
- S. Okazaki, H. Kawada, Y. Koshiba, N. Kasai, Y. Maru, T. Mizutani, Y. Takesaki, and S. Shimano, "Catalytic combustion type optical fiber Bragg grating hydrogen gas sensor using platinum-loaded fumed silica powder", Int. J. Hydrogen Energy, Vol. 48, No. 25, pp. 9512-9527, 2023.
- C.-M. Wu, K. G. Motora, G.-Y. Chen, D.-H. Kuo, and N. S. Gultom, "Highly efficient reduced tungsten oxide-based hydrogen gas sensor at room temperature", Mater. Sci. Eng. B, Vol. 289, p. 116285, 2023.
- W. Son, D. W. Lee, Y. K. Kim, S. Chun, J. M. Lee, J. H. Choi, W. S. Shim, D. Suh, S. K. Lim, and C. Choi, "PdO-nanoparticle-embedded carbon nanotube yarns for wearable hydrogen gas sensing platforms with fast and sensitive responses", ACS Sens., Vol. 8, No. 1, pp. 94-102, 2023.
- H. Cai, N. Luo, X. Wang, M. Guo, X. Li, B. Lu, Z. Xue, and J. Xu, "Kinetics?Driven Dual Hydrogen Spillover Effects for Ultrasensitive Hydrogen Sensing", Small, Vol. 19, No. 42, p. 2302652, 2023.
- X. Wang, X. Meng, Y. Zhu, and W. Gao, "Design of ultra-high-response gas sensor based on Pd-WO3/WS2 ternary nanocomposites for ultrafast hydrogen detection", Sens. Actuators B Chem., Vol. 401, p. 134991, 2024.
- V. N. Rao, P. K. Sairam, M. D. Kim, M. Rezakazemi, T. M. Aminabhavi, C. W. Ahn, and J. M. Yang, "CdS/TiO2 nano hybrid heterostructured materials for superior hydrogen production and gas sensor applications", J. Environ. Manage., Vol. 340, p. 117895, 2023.
- A. Umar, S. Akbar, R. Kumar, J. N. O. Amu-Darko, S. Hussain, A. A. Ibrahim, M. A. Alhamami, N. Almehbad, T. Almas, and A. F. Seliem, "Ce-doped ZnO nanostructures: A promising platform for NO2 gas sensing", Chemosphere, Vol. 349, p. 140838, 2024.
- X. Wang, Y. Li, X. Jin, G. Sun, J. Cao, and Y. Wang, "The effects of Co doping on the gas sensing performance of In2O3 porous nanospheres", Sens. Actuators B Chem., Vol. 403, p. 135155, 2024.
- J. Zhao, H. Wang, Y. Cai, J. Zhao, Z. Gao, and Y.-Y. Song, "The challenges and opportunities for TiO2 nanostructures in gas sensing", ACS Sens., Vol. 9, No. 4, pp. 1644-1655, 2024.
- K. H. Prasad, S. Vinoth, S. Valanarasu, B. Prakash, Z. Ahmad, T. Alshahrani, and M. Shkir, "Exploring the ammonia gas sensing properties of Gd doped CeO2 thin films deposited by spray pyrolysis method", J. Alloys Compd., Vol. 1002, p. 175415, 2024.
- J. Y. Kim, B. Jang, M. Lim, J. Y. Park, and Y.-H. Choa, "Enhanced PtRu by CeO2 hollow nanofibers: Hydrogen gas sensing with CO-resistant in fuel cell", J. Power Sources, Vol. 613, p. 234842, 2024.
- T. M. Nimbalkar, S. A. Kadam, Y. R. Ma, A. C. Khot, M. Selvaraj, Z. Ahmad, and V. B. Patil, "Zn mixed CeO2 nanoparticles: Enhancement of NO2 gas sensing performance", J. Alloys Compd., Vol. 987, p. 174109, 2024.
- S. Hussain, N. Aslam, X. Y. Yang, M. S. Javed, Z. Xu, M. Wang, G. Liu, and G. Qiao, "Unique polyhedron CeO2 nanostructures for superior formaldehyde gas-sensing performances", Ceram. Int., Vol. 44, No. 16, pp. 19624-19630, 2018.
- D. Van Dao, T. T. D. Nguyen, S. M. Majhi, G. Adilbish, H. J. Lee, Y. T. Yu, and I. H. Lee, "Ionic liquid-supported synthesis of CeO2 nanoparticles and its enhanced ethanol gas sensing properties", Mater. Chem. Phys., Vol. 231, pp. 1-8, 2019.
- V. T. Duoc, H. Nguyen, T. M. Ngoc, C. T. Xuan, C. M. Hung, N. Van Duy, and N. D. Hoa, "Hydrogen gas sensor based on self-heating effect of SnO2/Pt thin film with ultralow power consumption", Int. J. Hydrogen Energy, Vol. 61, pp. 774-782, 2024.
- Y. Nagarjuna and Y.-J. Hsiao, "TeO2 doped ZnO nanostructure for the enhanced NO2 gas sensing on MEMS sensor device", Sens. Actuators B Chem., Vol. 401, p. 134891, 2024.
- V. K. Premkumar, R. Vishnuraj, T. S. Sheena, X. Yang, B. Pullithadathil, C. Zhang, and Z. Wu, "Influence of ZnO hexagonal pyramid nanostructures for highly sensitive and selective NO2 gas sensor", J. Alloys Compd., Vol. 994, p. 174625, 2024.
- C. Sun, J. Shao, G. Pan, and X. Yang, "Triethylamine gas sensor based on Zn2SnO4 polyhedron decorated with Au nanoparticles and density functional theory investigation", Sens. Actuators B Chem., Vol. 408, p. 135510, 2024.
- D. Kong, B. Ma, L. Zhang, L. Yang, C. Li, C. Yin, K. Wu, and Y. Wang, "Metal (Au, Ag, Pt) Doping Effects on the Gas-Sensing Mechanism and Characteristics of Two-Dimensional WS2: A First-Principle", ACS Appl. Electron. Mater., Vol. 6, No. 2, pp. 958-968, 2024.
- T. Zeng, D. Ma, and Y. Gui, "Gas-Sensitive Performance Study of Metal (Au, Pd, Pt)/ZnO Heterojunction Gas Sensors for Dissolved Gases in Transformer Oil", Langmuir, Vol. 40, No. 18, pp. 9819-9830, 2024.
- A. Mirzaei, H. R, Yousefi, F. Falsafi, M. Bonyani, J. H. Lee, J. H. Kim, H. W. Kim, and S. S. Kim, "An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas", Int. J. Hydrogen Energy, Vol. 44, No. 36, pp. 20552-20571, 2019.
- L. Moumaneix, A. Rautakorpi, and T. Kallio, "Interactions between hydrogen and palladium nanoparticles: resolving adsorption and absorption contributions", ChemElectroChem, Vol. 10, No. 6, p. e202201109, 2023.
- J. Y. Kim, K. Choi, S. W. Kim, C. W. Park, S. I. Kim, A. Mirzaei, J. H. Lee, and D. Y. Jeong, "Enhancement of H2 Gas Sensing Using Pd Decoration on ZnO Nanoparticles", Chemosensors, Vol. 12, No. 6, p. 90, 2024.
- R. Dus, R. Nowakowski, and E. Nowicka, "Chemical and structural components of work function changes in the process of palladium hydride formation within thin Pd film", J. Alloys Compd., Vol. 404, pp. 284-287, 2005.
- Z. Cai, J. Park, and S. Park, "Synergistic effect of Pd and Fe2O3 nanoparticles embedded in porous NiO nanofibers on hydrogen gas detection: Fabrication, characterization, and sensing mechanism exploration", Sens. Actuators B Chem., Vol. 388, p. 133836, 2023.
- X. Meng, M. Bi, Q. Xiao, and W. Gao, "Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO2 nanoparticles", Int. J. Hydrogen Energy, Vol. 47, No. 5, pp. 3157-3169, 2022.
- T. Thathsara, C. J. Harrison, D. Schonauer-Kamin, U. Mansfeld, R. Moos, F. M. Malherbe, R. K. Hocking, and M. Shafiei, "Pd Nanoparticles Decorated Hollow TiO2 Nanospheres for Highly Sensitive and Selective UV-Assisted Hydrogen Gas Sensors", ACS Appl. Energy Mater., Vol. 7, No. 14, pp. 5608-5620, 2024.
- D. Zhang, C. Jin, H. Tian, Y. Xiong, H. Zhang, P. Qiao, J. Fan, Z. Zhang, Z. Y. Li, and J. Li, "An In situ TEM study of the surface oxidation of palladium nanocrystals assisted by electron irradiation", Nanoscale, Vol. 9, No. 19, pp. 6327-6333, 2017.
- S. Kumar, S. D. Lawaniya, S. R. Nelamarri, M. Kumar, P. K. Dwivedi, Y. T. Yu, Y. K. Mishra, and K. Awasthi, "Bimetallic Ag-Pd nanoparticles decorated ZnO nanorods for efficient hydrogen sensing", Sens. Actuators B Chem., Vol. 394, p. 134394, 2023.
- X. Meng, M. Bi, and W. Gao, "PdAg alloy modified SnO2 nanoparticles for ultrafast detection of hydrogen", Sens. Actuators B Chem., Vol. 382, p. 133515, 2023.
- S. B. Eadi, J. S. Oh, C. Kim, G. Sim, K. Kim, H. Y. Kim, J. J. Kim, H. R. Do, S.-I. Chu, S. H. Jung, and H. D. Lee, "Improved hydrogen gas sensing performance of Pd-Ni alloy thin films", Int. J. Hydrogen Energy, Vol. 48, No. 33, pp. 12534-12539, 2023.
- G. Pandey, M. Bhardwaj, S. Kumar, S. D. Lawaniya, M. Kumar, P. K. Dwivedi, and K. Awasthi, "Synergistic effects of Pd-Ag decoration on SnO/SnO2 nanosheets for enhanced hydrogen sensing", Sens. Actuators B Chem., Vol. 402, p. 135062, 2024.
- P. G. Choi and Y. Masuda, "Surface modification of nanosheet-type tin oxide with Au-Pd for hydrogen gas sensing", J. Alloys Compd., Vol. 960, p. 170888, 2023.
- J. Li, Z. Yuan, Z. Mu, Z. Yang, and F. Meng, "Synergistic catalytic effect of PdPt bimetallic alloy for room temperature hydrogen detection", Sens. Actuators B Chem., Vol. 405, p. 135404, 2024.
- H. Kobayashi, M. Yamauchi, R. Ikeda, T. Yamamoto, S. Matsumura, and H. Kitagawa, "Double enhancement of hydrogen storage capacity of Pd nanoparticles by 20 at% replacement with Ir; systematic control of hydrogen storage in Pd-M nanoparticles (M= Ir, Pt, Au)", Chem. Sci., Vol. 9, No. 25, pp. 5536-5540, 2018.
- T. Yayama, T. Ishimoto, and M. Koyama, "Effect of alloying elements on hydrogen absorption properties of palladium-based solid solution alloys", J. Alloys Compd., Vol. 653, pp. 444-452, 2015.
- M. LaPrade, K. D. Allard, J. F. Lynch, and T. B. Flanagan, "Absorption of hydrogen by iridium/palladium substitutional alloys", J. Chem. Soc. Faraday Trans. 1, Vol. 70, pp. 1615-1630, 1974.
- H. Guo, H. Li, K. Jarvis, H. Wan, P. Kunal, S. G. Dunning, Y. Liu, G. Henkelman, and S. M. Humphrey, "Microwave-assisted synthesis of classically immiscible Ag-Ir alloy nanoparticle catalysts", ACS Catal., Vol. 8, No. 12, pp. 11386-11397, 2018.
- M. Zahmakiran, "Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ ZIF-8): synthesis, structural properties and catalytic performance", Dalton Trans., Vol. 41, No. 41, pp. 12690-12696, 2012.
- W. Liu, Y. Magnin, D. Forster, J. Bourgon, T. Len, F. Morfin, L. Piccolo, H. Amara, and C. Zlotea, "Size-dependent hydrogen trapping in palladium nanoparticles", J. Mater Chem. A, Vol. 9, No. 16, pp. 10354-10363, 2021.
- M. Yamauchi, R. Ikeda, H. Kitagawa, and M. Takata, "Nanosize effects on hydrogen storage in palladium", The J. Phys. Chem. C, Vol. 112, No. 9, pp. 3294-3299, 2008.
- H. Guo, Z. Fang, H. Li, D. Fernandez, G. Henkelman, S. M. Humphrey, and G. Yu, "Rational design of rhodium-iridium alloy nanoparticles as highly active catalysts for acidic oxygen evolution", ACS Nano, Vol. 13, No. 11, pp. 13225- 13234, 2019.
- Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, and A. P. Alivisatos, "Formation of hollow nanocrystals through the nanoscale Kirkendall effect," Sci., Vol. 304, No. 5671, pp. 711-714, 2004.
- X. Wang, J. Chen, J. Zeng, Q. Wang, Z. Li, R. Qin, C. Wu, Z. Xie, and L. Zheng, "The synergy between atomically dispersed Pd and cerium oxide for enhanced catalytic properties", Nanoscale, Vol. 9, No. 20, pp. 6643-6648, 2017.
- Z. S. H. S. Rajan, T. Binninger, P. J. Kooyman, D. Susac, and R. Mohamed, "Organometallic chemical deposition of crystalline iridium oxide nanoparticles on antimony-doped tin oxide support with high-performance for the oxygen evolution reaction", Catal. Sci. Technol., Vol. 10, No. 12, pp. 3938-3948, 2020.
- J. M. Ferreira Jr, K. P. Souza, F. M. Queiroz, I. Costa, and C. R. Tomachuk, "Electrochemical and chemical characterization of electrodeposited zinc surface exposed to new surface treatments", Surf. Coat. Technol., Vol. 294, pp. 36-46, 2016.
- Q. Hu, H. Jiang, W. Zhang, X. Wang, X. Wang, and Z. Zhang, "Unveiling the synergistic effects of hydrogen annealing on CeO2 nanofibers for highly sensitive acetone gas detection: Role of Ce3+ ions and oxygen vacancies", Appl. Surf. Sci., Vol. 640, p. 158411, 2023.
- J. Lian, P. Liu, C. Jin, Z. Shi, X. Luo, and Q. Liu, "Perylene diimide-functionalized CeO2 nanocomposite as a peroxidase mimic for colorimetric determination of hydrogen peroxide and glutathione", Microchim. Acta, Vol. 186, pp. 1-9, 2019.
- G. Jung, S. Ju, K. Choi, J. Kim, S. Hong, J. Park, W. Shin, Y. Jeong, S. Han, W. Y. Choi, and J. H. Lee, "Reconfigurable manipulation of oxygen content on metal oxide surfaces and applications to gas sensing", ACS Nano, Vol. 17, No. 18, pp. 17790-17798, 2023.
- L. Liu, Y. Wang, K. Guan, Y. Liu, Y. Li, F. Sun, X. Wang, C. Zhang, S. Feng, and T. Zhang, "Influence of oxygen vacancies on the performance of SnO2 gas sensing by near-ambient pressure XPS studies", Sens. Actuators B Chem., Vol. 393, p. 134252, 2023.
- K. Sun, G. Zhan, L. Zhang, Z. Wang, and S. Lin, "Highly sensitive NO2 gas sensor based on ZnO nanoarray modulated by oxygen vacancy with Ce doping", Sens. Actuators B Chem., Vol. 379, p. 133294, 2023.
- N. Barsan and U. Weimar, "Conduction model of metal oxide gas sensors", J. Electroceram., Vol. 7, pp. 143-167, 2001.
- N. Goel, K. Kunal, A. Kushwaha, and M. Kumar, "Metal oxide semiconductors for gas sensing", Eng. Rep., Vol. 5, No. 6, p. e12604, 2023.
- N. Yamazoe, G. Sakai, and K. Shimanoe, "Oxide semiconductor gas sensors", Catal. Surv. Asia, Vol. 7, pp. 63-75, 2003.
- J. Sun, G. Yin, T. Cai, W. Yu, F. Peng, Y. Sun, F. Zhang, J. Lu, M. Ge, and D. He, "The role of oxygen vacancies in the sensing properties of Ni substituted SnO2 microspheres", RSC Adv., Vol. 8, No. 58, pp. 33080-33086, 2018.
- D. J. Yu, W. Oum, A. Mirzaei, K. Y. Shin, E. B. Kim, H. M. Kim, S. S. Kim, and H. W. Kim, "Enhancement of xylene gas sensing by using Au core structures in regard to Au@SnO2 core-shell nanocomposites", Sens. Actuators B Chem., Vol. 392, p. 134018, 2023.
- H. Cui, M. Ran, X. Peng, and G. Zhang, "First-principles design of noble metal (Rh and Pd) dispersed Janus WSTe monolayer for toxic gas sensing applications", J. Environ. Chem. Eng., Vol. 12, No. 2, p. 112047, 2024.
- J. Zhang, W. Feng, Y. Zhang, W. Zeng, and Q. Zhou, "Gas-sensing properties and first-principles comparative study of metal (Pd, Pt)-decorated MoSe2 hierarchical nanoflowers for efficient SO2 detection at room temperature", J. Alloys Compd., Vol. 968, p. 172006, 2023.
- Z. Li, X. Xing, D. Feng, L. Du, Y. Tian, X. Chen, and D. Yang, "Nitrogen-doped carbon microfibers decorated with palladium and palladium oxide nanoparticles for high-concentration hydrogen sensing", Ceram. Int., Vol. 50, No. 12, pp. 21519-21525, 2024.
- Q. Li, L. Wang, A. Xiao, L. Zhu, and Z. Yang, "Hydrogen sensing towards palladium-based nanocomposites: A review", Int. J. Hydrogen Energy, https://www.sciencedirect.com/science/article/abs/pii/S036031992400003X, 2024.
- Z. Chen, P. Yuan, C. Chen, X. Wang, J. Wang, J. Jia, B. Davaasuren, Z. Lai, N. M. Khashab, K.-W. Huang, O. M. Bakr, J. Yin, and K. N. Salama, "Balancing Pd-H Interactions: Thiolate?Protected Palladium Nanoclusters for Robust and Rapid Hydrogen Gas Sensing", Adv. Mater., https://doi.org/10.1002/adma.202404291, p. 2404291, 2024.
- T. T. Nguyet, D. T. T. Le, N. Van Duy, C. T. Xuan, S. Ingebrandt, X. T. Vu, and N. D. Hoa, "A sigh-performance hydrogen gas sensor based on Ag/Pd nanoparticle-functionalized ZnO nanoplates", RSC Adv., Vol. 13, No. 19, pp. 13017-13029, 2023.
- N. Luo, Y. Chen, D. Zhang, M. Guo, Z. Xue, X. Wang, Z. Cheng, and J. Xu, "High-sensitive MEMS hydrogen sulfide sensor made from PdRh bimetal hollow nanoframe decorated metal oxides and sensitization mechanism study", ACS Appl. Mater. Interfaces, Vol. 12, No. 50, pp. 56203-56215, 2020.
- X. Yang, Y. Deng, H. Yang, Y. Liao, X. Cheng, Y. Zou, L. Wu, and Y. Deng, "Functionalization of mesoporous semiconductor metal oxides for gas sensing: Recent advances and emerging challenges", Adv. Sci., Vol. 10, No. 1, p. 2204810, 2023.
- S. Agarwal, S. Kumar, H. Agrawal, M. G. Moinuddin, M. Kumar, S. K. Sharma, and K. Awasthi, "An efficient hydrogen gas sensor based on hierarchical Ag/ZnO hollow microstructures", Sens. Actuators B Chem., Vol. 346, p. 130510, 2021.
- P. Das, Y.-S. Lee, S.-C. Lee, and S. Bhattacharjee, "Computational design of a new palladium alloy with efficient hydrogen storage capacity and hydrogenation-dehydrogenation kinetics", Int. J. Hydrogen Energy, Vol. 48, No. 49, pp. 18795-18803, 2023.
- K. Hubkowska, M. Pajak, and A. Czerwinski, "Hydrogen electrosorption properties of electrodeposited Pd-Ir alloys", J. Solid State Electrochem., Vol. 26, No. 1, pp. 103-109, 2022.