Acknowledgement
S. L., G. H. L., and M. C. contributed equally to this study. This study was supported by the Korea Research Institute of Chemical Technology (KRICT) Republic of Korea (KS2321-10). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (Ministry of Science and ICT) (RS-2024-00421857).
References
- A. Mirzaei, S. Leonardi, and G. Neri, "Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review", Ceram. Int., Vol. 42, No. 14, pp. 15119-15141, 2016.
- G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, "Metal oxide semi-conductor gas sensors in environmental monitoring", Sens., Vol. 10, No. 6, pp. 5469-5502, 2010.
- X. Chen, M. Leishman, D. Bagnall, and N. Nasiri, "Nanostructured gas sensors: From air quality and environmental monitoring to healthcare and medical applications", Nanomater., Vol. 11, No. 8, p. 1927, 2021.
- S. Uma and M. Shobana, "Metal oxide semiconductor gas sensors in clinical diagnosis and environmental monitoring", Sens. Actuators A Phys., Vol. 349, p. 114044, 2023.
- E. Kanazawa, G. Sakai, K. Shimanoe, Y. Kanmura, Y. Teraoka, N. Miura, and N. Yamazoe, "Metal oxide semiconductor N2O sensor for medical use", Sens. Actuators B Chem., Vol. 77, No. 1-2, pp. 72-77, 2001.
- C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors", Sens., Vol. 10, No. 3, pp. 2088-2106, 2010.
- A. Lahlalia, L. Filipovic, and S. Selberherr, "Modeling and simulation of novel semiconducting metal oxide gas sensors for wearable devices", IEEE Sens. J., Vol. 18, No. 5, pp. 1960-1970, 2018.
- F. Sarf, "Metal oxide gas sensors by nanostructures", Gas Sens., Vol. 1, pp. 1-17, 2020.
- H. Jin, T.-P. Huynh, and H. Haick, "Self-healable sensors based nanoparticles for detecting physiological markers via skin and breath: toward disease prevention via wearable devices", Nano Lett., Vol. 16, No. 7, pp. 4194-4202, 2016.
- M. Setka, M. Claros, O. Chmela, and S. Vallejos, "Photoactivated materials and sensors for NO2 monitoring", J. Mater. Chem. C, Vol. 9, No. 47, pp. 16804-16827, 2021.
- D. Cho, J. M. Suh, S. H. Nam, S. Y. Park, M. Park, T. H. Lee, K. S. Choi, J. Lee, C. Ahn, H. W. Jang, Y.-S. Shim, and S. Jeon, "Optically activated 3D thin-shell TiO2 for super-sensitive chemoresistive responses: toward visible light activation", Adv. Sci., Vol. 8, No. 3, p. 2001883, 2021.
- T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, "A new detector for gaseous components using semiconductive thin films", Anal. Chem., Vol. 34, No. 11, pp. 1502-1503, 1962.
- N. Taguchi, "Gas-detecting device", U. S. Patent US3631436A, 18 Dec., 1971.
- Y. Shi, L. Li, Z. Xu, F. Guo, and W. Shi, "Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production", J. Chem. Eng., Vol. 459, p. 141549, 2023.
- H. Zhao, Y. Wang, and Y. Zhou, "Accelerating the Gas-Solid Interactions for Conductometric Gas Sensors: Impacting Factors and Improvement Strategies", Mater., Vol. 16, No. 8, p. 3249, 2023.
- G. Ghorbani and F. Taghipour, "UV-activated chemiresistive gas sensor response curve analysis for the fast measurement of toxic gases", Sens. Actuators B Chem., p. 136396, 2024.
- I. Ahmad, P. S. Lo, A. Khaleed, A. Djurisic, Y. He, and A. M. C. Ng, "Metal oxide nanoparticles incorporated mesoporous silica nanospheres for oxygen scavenging", Proc. of Oxide-based Materials and Devices XIII, pp. 181-187, San Francisco, United States, 2022.
- M. S. Almomani, N. M. Ahmed, M. Rashid, N. Suardi, M. A. Almessiere, N. Madkhali, O. A. Aldaghri, and K. H. Ibnaouf, "Photovoltaic performance of spherical TiO2 nanoparticles derived from titanium hydroxide Ti(OH)4: role of annealing varying temperature", Energies, Vol. 15, No. 5, p. 1648, 2022.
- H. Liu, W. Shen, X. Chen, and J.-P. Corriou, "A high-performance NH3 gas sensor based on TiO2 quantum dot clusters with ppb level detection limit at room temperature", J. Mater. Sci.: Mater. Electron., Vol. 29, pp. 18380-18387, 2018.
- U. Joost, A. Sutka, M. Visnapuu, A. Tamm, M. Lembinen, M. Antsov, K. Utt, K. Smits, E. Nommiste, and V. Kisand, "Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO2 nanoparticles on a Si substrate", Beilstein J. Nanotechnol., Vol. 8, No. 1, pp. 229-236, 2017.
- A. Sutka, R. Eglitis, A. Kuzma, K. Smits, A. Zukuls, J. D. Prades, and C. Fabrega, "Photodoping-Inspired Room-Temperature Gas Sensing by Anatase TiO2 Quantum Dots", ACS Appl. Nano Mater., Vol. 4, No. 3, pp. 2522-2527, 2021.
- T. Thathsara, C. J. Harrison, D. Schonauer-Kamin, U. Mansfeld, R. Moos, R. Moos, F. M. Malherbe, R. K. Hocking, and M. Shafiei, "Pd Nanoparticles Decorated Hollow TiO2 Nanospheres for Highly Sensitive and Selective UV-Assisted Hydrogen Gas Sensors", ACS Appl. Energy Mater., Vol. 7, No. 14, pp. 5608-5620, 2024.
- M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, "Gas sensing properties of defect-controlled ZnO-nanowire gas sensor", Appl. Phys. Lett., Vol. 93, No. 26, p. 263103, 2008.
- Q. Yu, C. Yu, J. Wang, F. Guo, S. Gao, S. Jiao, H. Li, X. Zhang, X. Wang, H. Gao, H. Yang, and L. Zhao, "Gas sensing properties of self-assembled ZnO nanotube bundles", RSC Adv., Vol. 3, No. 37, pp. 16619-16625, 2013.
- S. Cho, D. H. Kim, B. S. Lee, J. Jung, W. R. Yu, S. H. Hong, and S. Lee, "Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition, an O2 plasma process and an annealing process", Sens. Actuators B Chem., Vol. 162, No. 1, pp. 300-306, 2012.
- G. Korotcenkov, "The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors", Mater. Sci. Eng. R Rep., Vol. 61, No. 1-6, pp. 1-39, 2008.
- N. Shaalan, T. Yamazaki, and T. Kikuta, "Influence of morphology and structure geometry on NO2 gas-sensing characteristics of SnO2 nanostructures synthesized via a thermal evaporation method", Sens. Actuators B Chem., Vol. 153, No. 1, pp. 11-16, 2011.
- H. J. Choi, S. H. Kwon, W. S. Lee, K. G. Im, T. H. Kim, B. R. Noh, S. Park, S. Oh, and K.-K. Kim, "Ultraviolet photoactivated room temperature NO2 gas sensor of ZnO hemitubes and nanotubes covered with TiO2 nanoparticles", Nanomater., Vol. 10, No. 3, p. 462, 2020.
- J. Li, D. Gu, Y. Yang, H. Du, and X. Li, "UV light activated SnO2/ZnO nanofibers for gas sensing at room temperature", Front. Mater., Vol. 6, p. 158, 2019.
- J. Liu, Z. Guo, F. Meng, T. Luo, M. Li, and J. Liu, "Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS (en) 0.5 (en= ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection", Nat. Nanotechnol., Vol. 20, No. 12, p. 125501, 2009.
- J. Gong, Y. Li, X. Chai, Z. Hu, and Y. Deng, "UV-light-activated ZnO fibers for organic gas sensing at room temperature", J. Phys. Chem. C., Vol. 114, No. 2, pp. 1293-1298, 2010.
- S. Park, S. An, Y. Mun, and C. Lee, "UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature", ACS Appl. Mater. Interfaces, Vol. 5, No. 10, pp. 4285-4292, 2013.
- A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng. B., Vol. 229, pp. 206-217, 2018.
- F. Meng, H. Zheng, Y. Sun, M. Li, and J. Liu, "UV-activated room temperature single-sheet ZnO gas sensor", Micro Nano Lett., Vol. 12, No. 10, pp. 813-817, 2017.
- J. Wang, C. Hu, Y. Xia, and B. Zhang, "Mesoporous ZnO nanosheets with rich surface oxygen vacancies for UV-activated methane gas sensing at room temperature", Sens. Actuators B Chem., Vol. 333, p. 129547, 2021.
- J. Lee, M. Park, Y. G. Song, D. Cho, K. Lee, Y. S. Shim, and S. Jeon, "Role of graphene quantum dots with discrete band gaps on SnO2 nanodomes for NO2 gas sensors with an ultralow detection limit", Nanoscale Adv., Vol. 5, No. 10, pp. 2767-2775, 2023.
- J. Lee, D. Cho, H. Chen, Y.-S. Shim, J. Park, and S. Jeon, "Proximity-field nanopatterning for high-performance chemical and mechanical sensor applications based on 3D nanostructures", Appl. Phys. Rev., Vol. 9, No. 1, p. 011322, 2022.
- S. H. Nam, M. Kim, N. Kim, D. Cho, M. Choi, J. H. Park, J. Shin, and S. Jeon, "Photolithographic realization of target nanostructures in 3D space by inverse design of phase modulation", Sci. Adv., Vol. 8, No. 21, p. eabm6310, 2022.
- S. H. Nam, G. Hyun, D. Cho, S. Han, G. Bae, H. Chen, K. Kim, Y. Ham, J. Park, and S. Jeon, "Fundamental principles and development of proximity-field nanopatterning toward advanced 3D nanofabrication", Nano Res., Vol. 14, pp. 2965-2980, 2021.
- W. Ku, G. Lee, J. Y. Lee, D. H. Kim, K. H. Park, J. Lim, D. Cho, S. C. Ha, B. G. Jung, H. Hwang, W. Lee, H. Shin, H. S. Jang, J.-O. Lee, and J.-H. Hwang, "Rational design of hybrid sensor arrays combined synergistically with machine learning for rapid response to a hazardous gas leak environment in chemical plants", J. Hazard. Mater., Vol. 466, p. 133649, 2024.
- D. Kwak, H. Kim, S. Jang, B. G. Kim, D. Cho, H. Chang, and J. O. Lee, "Investigation of Laser-Induced Graphene (LIG) on a Flexible Substrate and Its Functionalization by Metal Doping for Gas-Sensing Applications", Int. J. Mol. Sci., Vol. 25, No. 2, p. 1172, 2024.
- J. M. Suh, Y. G. Song, J. H. Seo, M. S. Noh, M. G. Kang, W. Sohn, J. Lee, K. Lee, D. Cho, S. Jeon, C.-Y. Kang, Y.- S. Shim, and H. W. Jang, "Facile Formation of Metal-Oxide Nanocraters by Laser Irradiation for Highly Enhanced Detection of Volatile Organic Compounds", Small Struct., Vol. 4, No. 9, p. 2300068, 2023.
- S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks", Proc. of Natl. Acad. Sci., pp. 12428-12433, United States, 2004.
- A. Sanger, S. B. Kang, M. H. Jeong, M. J. Im, I. Y. Choi, C. U. Kim, H. Lee, Y. M. Kwon, J. M. Baik, H. W. Jang, and K. J. Choi, "Morphology-Controlled Aluminum-Doped Zinc Oxide Nanofibers for Highly Sensitive NO2 Sensors with Full Recovery at Room Temperature", Adv. Sci., Vol. 5, No. 9, p. 1800816, 2018.
- N. Barsan and U. Weimar, "Conduction model of metal oxide gas sensors", J. Electroceram., Vol. 7, pp. 143-167, 2001.
- J. M. Suh, D. Cho, S. Lee, T. H. Lee, J. W. Jung, J. Lee, S. H. Cho, T. H. Eom, J. W. Hong, Y. S. Shim, S. Jeon, and H. W. Jang, "Rationally designed TiO2 nanostructures of continuous pore network for fast-responding and highly sensitive acetone sensor", Small Methods, Vol. 5, No. 12, p. 2100941, 2021.
- M. Tobajas, C. Belver, and J. Rodriguez, "Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures", J. Chem. Eng., Vol. 309, pp. 596-606, 2017.
- Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, "TiO2- graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2- graphene truly different from other TiO2- carbon composite materials?", ACS Nano, Vol. 4, No. 12, pp. 7303-7314, 2010.
- A. Mancuso, O. Sacco, V. Vaiano, D. Sannino, S. Pragliola, V. Venditto, and N. Morante, "Visible light active Fe-Pr codoped TiO2 for water pollutants degradation", Catal. Today., Vol. 380, pp. 93-104, 2021.
- W.-K. Wang, W. Zhu, L. Mao, J. Zhang, Z. Zhou, and G. Zhao, "Two-dimensional TiO2-g-C3N4 with both TiN and CO bridges with excellent conductivity for synergistic photoelectrocatalytic degradation of bisphenol A", J. Colloid Interface Sci., Vol. 557, pp. 227-235, 2019.
- D. H. Kim, S. Chong, C. Park, J. Ahn, J. S. Jang, J. Kim, and I.-D. Kim, "Oxide/ZIF-8 Hybrid Nanofiber Yarns: Heightened Surface Activity for Exceptional Chemiresistive Sensing", Adv. Mater., Vol. 34, No. 10, p. 2105869, 2022.
- T. La Rocca, E. Carretier, D. Dhaler, E. Louradour, T. Truong, and P. Moulin, "Purification of pharmaceutical solvents by pervaporation through hybrid silica membranes", Membranes, Vol. 9, No. 7, p. 76, 2019.
- S. R. Venna and M. A. Carreon, "Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation", J. Am. Chem. Soc., Vol. 132, No. 1, pp. 76-78, 2010.
- J. Shin, G. Lee, M. Choi, H. Jang, Y. Lim, G. S. Kim, S. H. Nam, S. H. Baek, H. C. Song, J. Kim, C. Y. Kang, J.-O. Lee, S. Jeon, D. Cho, and J.-S. Jang, "Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization", J. Mater. Chem. A., Vol. 11, No. 34, pp. 18195-18206, 2023.
- J. Lee, H. Lee, T. H. Bae, D. Cho, M. Choi, G. Bae, Y. S. Shim, and S. Jeon, "3D ZnO/ZIF-8 Hierarchical Nanostructure for Sensitive and Selective NO2 Sensing at Room Temperature", Small Structures, Vol. 5, No. 4, p. 2300503, 2024.
- E. Espid and F. Taghipour, "UV-LED photo-activated chemical gas sensors: A review", Crit. Rev. Solid State Mater. Sci., Vol. 42, No. 5, pp. 416-432, 2017.
- J. Saura, "Gas-sensing properties of SnO2 pyrolytic films subjected to ultrviolet radiation", Sens. Actuators B Chem., Vol. 17, No. 3, pp. 211-214, 1994.
- Y. Lim, S. Lee, Y. M. Kwon, J. M. Baik, and H. Shin, "Gas sensor based on a metal oxide nanowire forest built on a suspended carbon nano-heater", Proc. of 2018 IEEE. Micro Electro Mechanical Systems (MEMS), pp. 905-907, Belfast, UK, 2018.
- G. Meng, F. Zhuge, K. Nagashima, A. Nakao, M. Kanai, Y. He, M. Boudot, T. Takahashi, K. Uchida, and Takeshi Yanagida, "Nanoscale thermal management of single SnO2 nanowire: pico-joule energy consumed molecule sensor", ACS Sens., Vol. 1, No. 8, pp. 997-1002, 2016.
- E. Espid and F. Taghipour, "Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED", Sens. Actuators B Chem., Vol. 241, pp. 828-839, 2017.
- I. Cho, Y. C. Sim, M. Cho, Y.-H. Cho, and I. Park, "Monolithic micro light-emitting diode/metal oxide nanowire gas sensor with microwatt-level power consumption", ACS Sens., Vol. 5, No. 2, pp. 563-570, 2020.
- W. Hu, L. Wan, Y. Jian, C. Ren, K. Jin, X. Su, X. Bai, H. Haick, M. Yao, and W. Wu, "Electronic noses: from advanced materials to sensors aided with data processing", Adv. Mater. Technol., Vol. 4, No. 2, p. 1800488, 2019.
- H. Chen, D. Huo, and J. Zhang, "Gas recognition in E-nose system: A review", IEEE Trans. Biomed. Circuits Syst., Vol. 16, No. 2, pp. 169-184, 2022.
- H. Jiang and J. Lin, "Nitride micro-LEDs and beyond-a decade progress review", Opt. Express., Vol. 21, No. 103, pp. A475-A484, 2013.
- T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, "Mini-LED and micro-LED: promising candidates for the next generation display technology", Appl. Sci., Vol. 8, No. 9, p. 1557, 2018.
- P. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, "Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes", Appl. Phys. Lett., Vol. 101, No. 23, p. 231110, 2012.
- F. Olivier, S. Tirano, L. Dupre, B. Aventurier, C. Largeron, and F. Templier, "Influence of size-reduction on the performances of GaN-based micro-LEDs for display application", J. Lumin., Vol. 191, pp. 112-116, 2017.
- N. L. Ploch, H. Rodriguez, C. Stolmacker, M. Hoppe, M. Lapeyrade, J. Stellmach, F. Mehnke, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, S. Einfeldt, and M. Kneissl, "Effective thermal management in ultraviolet light-emitting diodes with micro-LED arrays", IEEE Trans. Electron Dev., Vol. 60, No. 2, pp. 782-786, 2013.
- Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors", Appl. Phys. Lett., Vol. 84, No. 18, pp. 3654-3656, 2004.
- Y. Sivalingam, E. Martinelli, A. Catini, G. Magna, G. Pomarico, F. Basoli, R. Paolesse, and C. Di Natale, "Gas-sensitive photoconductivity of porphyrin-functionalized ZnO nanorods", J. Phys. Chem. C., Vol. 116, No. 16, pp. 9151-9157, 2012.
- L. Peng, J. Zhai, D. Wang, Y. Zhang, P. Wang, Q. Zhao, and T. Xie, "Size-and photoelectric characteristics-dependent formaldehyde sensitivity of ZnO irradiated with UV light", Sens. Actuators B Chem., Vol. 148, No. 1, pp. 66-73, 2010.
- S.-H. Chao, L.-H. Yeh, R. T. Wu, K. Kawagishi, and S.-C. Hsu, "Novel patterned sapphire substrates for enhancing the efficiency of GaN-based light-emitting diodes", RSC Adv., Vol. 10, No. 28, pp. 16284-16290, 2020.
- Qomaruddin, O. Casals, H. S. Wasisto, A. Waag, J. D. Prades, and C. Fabrega, "Visible-light-driven room temperature NO2 gas sensor based on localized surface plasmon resonance: the case of gold nanoparticle decorated zinc oxide nanorods (ZnO NRs)", Chemosensors, Vol. 10, No. 1, p. 28, 2022.
- C. Clavero, "Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices", Nat. Photon., Vol. 8, No. 2, pp. 95-103, 2014.
- X.-C. Ma, Y. Dai, L. Yu, and B.-B. Huang, "Energy transfer in plasmonic photocatalytic composites", Light Sci. Appl., Vol. 5, No. 2, pp. e16017-e16017, 2016.
- K. M. Mayer and J. H. Hafner, "Localized surface plasmon resonance sensors", Chem. Rev., Vol. 111, No. 6, pp. 3828-3857, 2011.
- C. Wang and D. Astruc, "Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion", Chem. Soc. Rev., Vol. 43, No. 20, pp. 7188-7216, 2014.
- X. Tian, X. Yang, F. Yang, and T. Qi, "A visible-light activated gas sensor based on perylenediimide-sensitized SnO2 for NO2 detection at room temperature", Colloids Surf., A, Vol. 578, p. 123621, 2019.
- X.-X. Wang, S. Zhang, Y. Liu, J.-N. Dai, H.-Y. Li, and X. Guo, "Light-excited chemiresistive sensors integrated on LED microchips", J. Mater. Chem. A., Vol. 9, No. 30, pp. 16545-16553, 2021.
- K. Lee, I. Cho, M. Kang, J. Jeong, M. Choi, K. Y. Woo, K. J. Yoon, Y. H. Cho, and I. Park, "Ultra-low-power e-nose system based on multi-micro-led-integrated, nanostructured gas sensors and deep learning", ACS Nano, Vol. 17, No. 1, pp. 539-551, 2022.
- J. Hwang, S.-H. Park, Y.-S. Shim, S. Sohn, J. H. Chung, Y.-H. Cho, J. Lee, M. Choi, G. H. Lee, D. Cho, K. Lee, and W. Lee, "Fast and selective isoprene gas sensor: influence of polystyrene size and role of the Au catalyst on gas sensing properties", Sens. Actuators B Chem., Vol. 422, pp. 136500, 2024.