• Title/Summary/Keyword: Photoactivated chemiresistors

Search Result 1, Processing Time 0.013 seconds

Photoactivated Metal Oxide-based Chemiresistors: Revolutionizing Gas Sensing with Ultraviolet Illumination

  • Sunwoo Lee;Gye Hyeon Lee;Myungwoo Choi;Gana Park;Dakyung Kim;Sangbin Lee;Jeong-O Lee;Donghwi Cho
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.274-287
    • /
    • 2024
  • Chemiresistors play a crucial role in numerous research fields, including environmental monitoring, healthcare, and industrial safety, owing to their ability to detect and quantify gases with high sensitivity and specificity. This review provides a comprehensive overview of the recent advancements in photoactivated chemiresistors and emphasizes their potential for the development of highly sensitive, selective, and low-power gas sensors. This study explores a range of structural configurations of sensing materials, from zero-dimensional quantum dots to three-dimensional, porous nanostructures and examines the impact of these designs on the photoactivity, gas interactions, and overall sensor performance-including gas responses and recovery rates. Particular focus is placed on metal-oxide semiconductors and the integration of ultraviolet micro-light emitting diodes, which have gained attention as key components for next-generation sensing technologies owing to their superior photoactivity and energy efficiency. By addressing existing technical challenges, such as limited sensitivity, particularly at room temperature (~22℃), this paper outlines future research directions, highlighting the potential of photoactivated chemiresistors in developing high-performance, ultralow-power gas sensors for the Internet of Things and other advanced applications.