DOI QR코드

DOI QR Code

Mini-review on VO2-based Sensors Utilizing Metal-insulator Transition

  • Hyeongyu Gim (Deparement of of Materials Science and Engineering, Chonnam National University) ;
  • Minho Lee (Deparement of of Materials Science and Engineering, Chonnam National University) ;
  • Woojin Hong (Deparement of of Materials Science and Engineering, Chonnam National University) ;
  • Kootak Hong (Deparement of of Materials Science and Engineering, Chonnam National University)
  • Received : 2024.08.28
  • Accepted : 2024.09.09
  • Published : 2024.09.30

Abstract

With the advent of artificial intelligence and Internet of Things, demands for high-performance sensors with high sensitivity and ultrafast response for big data acquisition and processing have increased. VO2, a strongly correlated material, has been shown to exhibit a reversible and abrupt resistance change in the sub-nanosecond scale through a phase transition from an insulating to a metallic state at 68℃. The metal-insulator transition (MIT) of VO2 provides the potential for the development of highly sensitive and ultrafast high-performance sensors. This is because it can be triggered by various external stimuli, such as heat, light, gas adsorption/desorption, and strain. Therefore, attempts have been made to develop high-performance sensors by controlling the MIT of VO2 in response to external stimuli. This study reviewed recent progress in various VO2-based sensors that utilize MIT, including photodetectors, gas sensors, and strain sensors. This review is expected to serve as an overview of the approaches for controlling the MIT behavior of VO2 and provide insights into the design of high-performance sensors that exploit MIT.

Keywords

Acknowledgement

This work was supported by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Ministry of Education (Grant No. P0025690, Semiconductor-Specialized University), Basic Science Research Capacity Enhancement Project through Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (Grant No. 2019R1A6C1010024), and the 'Regional Innovation Strategy (RIS)' through the National Research Foundation of Korea (NRF) funded by the Ministry of Education of Korea (Grant No. 2021RIS-002).

References

  1. M. Imada, A. Fujimori, and Y. Tokura, "Metal-insulator transitions", Rev. Mod. Phys., Vol. 70, pp. 1039-1263, 1998.
  2. E. Morosan, D. Natelson, A. H. Nevidomskyy, and Q. Si, "Strongly Correlated Materials", Adv. Mater., Vol. 24, No. 36, pp. 4896-4923, 2012.
  3. Y. J.Lee, Y. Kim, H. Gim, K. Hong, and H. W. Jang, "Nanoelectronics Using Metal-Insulator Transition", Adv. Mater., Vol. 36, No. 5, p. 2305353, 2024.
  4. P. Schofield, A. Bradicich, R. M. Gurrola, Y. Zhang, T. D. Brown, M. Pharr, P. J. Shamberger, and S. Banerjee, "Harnessing the Metal-Insulator Transition of VO2 in Neuromorphic Computing", Adv. Mater., Vol. 35, No. 37, p. 2205294, 2023.
  5. J. L. Andrews, D. A. Santos, M. Meyyappan, R. S. Williams, and S. Banerjee, "Building Brain-Inspired Logic Circuits from Dynamically Switchable Transition-Metal Oxides", Trends Chem., Vol. 1, No. 8, pp. 711-726, 2019.
  6. F. J. Morin, "Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature", Phys. Rev. Lett., Vol. 3, No. 1, p. 34, 1959.
  7. Z. Shao, X. Cao, H. Luo, and P. Jin, "Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials", NPG Asia Mater., Vol. 10, No. 7, pp. 581-605, 2018.
  8. M. Brahlek, L. Zhang, J. Lapano, H.-T. Zhang, R. Engel-Herbert, N. Shukla, S. Datta, H. Paik, and D. G. Schlom, "Opportunities in vanadium-based strongly correlated electron systems", MRS Commun., Vol. 7, No. 1, pp. 27-52, 2017.
  9. Z. Yang, C. Ko, and S. Ramanathan, "Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions", Annu. Rev. Mater. Res., Vol. 41, No. 1, pp. 337-367, 2011.
  10. K. Hong, C. W. Moon, J. M. Suh, T. H. Lee, S.-I Kim, S. Lee, and H. W. Jang, "Daylight-Induced Metal-Insulator Transition in Ag-Decorated Vanadium Dioxide Nanorod Arrays", ACS Appl. Mater. Interfaces, Vol. 11, No. 12, pp. 11568-11578, 2019.
  11. Y. Xin, J. Jiang, Y. Liu, H. Liang, Y.-J. Zeng, and Z. Ye, "Self-Powered Broad Spectral Photodetector with Ultrahigh Responsivity and Fast Response Based on Sb2Se3/VO2 Heterojunction", Adv. Mater. Interfaces, Vol. 8, No. 10, p. 2100058, 2021.
  12. X. Zhou, L. Zhao, W. Zhen, Y. Lin, C. Wang, T. Pan, L. Li, G. Du, L. Lu, X. Cao, and D. Li, "Phase-Transition-Induced VO2 Thin Film IR Photodetector and Threshold Switching Selector for Optical Neural Network Applications", Adv. Electron. Mater., Vol. 7, No. 5, p. 2001254, 2021.
  13. E. Strelcov, Y. Lilach, and A. Kolmakov, "Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor", Nano Lett., Vol. 9, No. 6, pp. 2322-2326, 2009.
  14. J. M. Baik, M. H. Kim, C. Larson, C. T. Yavuz, G. D. Stucky, A. M. Wodtke, and M. Moskovits, "Pd-Sensitized Single Vanadium Oxide Nanowires: Highly Responsive Hydrogen Sensing Based on the Metal-Insulator Transition", Nano Lett., Vol. 9, No. 12, pp. 3980-3984, 2009.
  15. B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, "External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor", Adv. Mater., Vol. 22, No. 45, pp. 5134-5139, 2010.
  16. R. Peierls, More surprises in theoretical physics, Princeton, Princeton University Press, NJ, pp. 1-106, 1991.
  17. J. B. Goodenough, "The two components of the crystallographic transition in VO2", J. Solid State Chem., Vol. 3, No. 4, pp. 490-500, 1971.
  18. N. F. Mott, Metal-insulator transitions, London, Taylor and Francis, UK, pp. 1-286, 2004.
  19. N. F. Mott, "The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals", Proc. Phys. Soc. Sect. A, Vol. 62, No. 7, p. 416, 1949.
  20. M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, "Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging", Science, Vol. 318, No. 5857, pp. 1750-1753, 2007.
  21. M. M. Qazilbash, K. S. Burch, D. Whisler, D. Shrekenhamer, B. G. Chae, H. T. Kim, and D. N. Basov, "Correlated metallic state of vanadium dioxide", Phys. Rev. B, Vol. 74, No. 20, p. 205118, 2006.
  22. Y. Sun, X. Xiao, G. Xu, G. Dong, G. Chai, H. Zhang, P. Liu, H. Zhu, and Y. Zhan, "Anisotropic vanadium dioxide sculptured thin films with superior thermochromic properties", Sci. Rep., Vol. 3, No. 1, p. 2756, 2013.
  23. J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, and D. Natelson, "Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams", Nat. Nanotechnol., Vol. 7, No. 6, pp. 357-362, 2012.
  24. H. Yoon, M. Choi, T.-W. Lim, H. Kwon, K. Ihm, J. K. Kim, S.-Y. Choi, and J. Son, "Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films", Nat. Mater., Vol. 15, No. 10, pp. 1113-1119, 2016.
  25. B. Li, Z. Wang, S. Zhao, C. Hu, L. Li, M. Liu, J. Zhu, T. Zhou, G. Zhang, J. Jiang, and C. Zou, "Enhanced Pd/a-WO3/VO2 Hydrogen Gas Sensor Based on VO2 Phase Transition Layer", Small Methods, Vol. 6, No. 12, p. 2200931, 2022.
  26. M. Darwish, Y. Zhabura, and L. Pohl, "Recent Advances of VO2 in Sensors and Actuators", Nanomaterials, Vol. 14, No. 7, p. 582, 2024.