DOI QR코드

DOI QR Code

다양한 온도의 지표 배경에서 적외선 위장을 위한 최적의 스텔스 물질 방사율 탐구

Exploring the Optimal Stealth Material Emissivity for Infrared Camouflage across Diverse Temperature Surface Backgrounds

  • 이진아 (연세대학교 기계공학과, 인간중심AI로보틱스 연구실) ;
  • 한재원 (애즈미(주)) ;
  • 신동준 (연세대학교 기계공학과, 인간중심AI로보틱스 연구실)
  • Jina Lee (Human-Centered AI Robotics Laboratory, Department of Mechanical Engineering, Yonsei University) ;
  • Jae Won Hahn (ASMI Ltd.) ;
  • Dongjun Shin (Human-Centered AI Robotics Laboratory, Department of Mechanical Engineering, Yonsei University)
  • 투고 : 2024.06.17
  • 심사 : 2024.08.02
  • 발행 : 2024.10.25

초록

현대의 적외선 유도무기는 표적이 방출하는 적외선을 탐색, 추적하여 표적을 파괴한다. 따라서 적외선 방사율이 낮은 소재로 표적을 덮으면 적외선 신호가 줄어들므로 추적을 피할 수 있다. 그러나 이 방법은 표적이 지표 배경보다 고온일 때만 유효하다. 지표 배경의 온도는 시간대에 따라 크게 변하므로, 표적의 방사율에 따른 표적 신호가 배경 신호보다 작아지는 야간에는 신호 대비에 의해 유도무기 광학계에 발각될 수 있다. 본 연구에서는 지상 표적이 적외선 스텔스를 구현하기 위한 최적 방사율을 지표 배경의 온도 및 방사율, 표적 온도에 따라 계산하고, 표적의 방사율에 따라 달라지는 표적 신호를 고려하여 유도무기 광학계가 수신하는 신호의 크기, 영상의 대비값, 조준 사거리(lock-on range)를 계산하였다. 또한 COMSOL Multiphysics 열영상 전산모사를 통하여 최적 방사율의 유효성을 검증하였다.

Modern infrared-guided weapons detect and destroy targets by seeking and tracking the infrared radiation emitted by the target. By covering the target with a material that has low infrared emissivity, the infrared signal can be reduced to evade tracking. However, this method is effective only when the target is hotter than the background. Since the temperature of the background varies significantly between day and night, target signals with low emissivity at night can be captured by the optical systems of guided weapons due to signal contrast, as they are smaller than the background signals. In this study, the optimal emissivity for implementing infrared stealth for ground targets is calculated based on the temperature and emissivity of the background, as well as the temperature of the target. The size of the signal received by the optical systems of guided weapons, the contrast value of the image, and the lock-on range were calculated for target signals that vary depending on the emissivity of the target. The effectiveness of the optimal emissivity was demonstrated by thermal imaging computer simulations using COMSOL Multiphysics software.

키워드

과제정보

논문을 살펴봐 주신 김진승 명예교수(전북대학교 물리학과)께 감사드립니다.

참고문헌

  1. N. Lee, J.-S. Lim, I. Chang, H. M. Bae, J. Nam, and H. H. Cho, "Flexible assembled metamaterials for infrared and microwave camouflage," Adv. Opt. Mater. 10, 2200448 (2022).
  2. M. Bae, T. Kim, T. Kim, D. Jung, and H. H. Cho, "Analysis on infrared stealth performance with emissivity controlled aircraft surface structure at various background," J. Comput. Struct. Eng. Inst. Korea 29, 455-461 (2016).
  3. M.-J. Kim, D.-W. Kang, R.-S. Myong, and W.-C. Kim, "Investigation of the effects of UAV nozzle configurations on aircraft lock-on range," J. Korean Soc. Aeronaut. Space Sci. 43, 204-212 (2015).
  4. V. Joy, A. Dileep, P. V. Abhilash, R. U. Nair, and H. Singh, "Metasurfaces for stealth applications: A comprehensive review," J. Electron. Mater. 50, 3129-3148 (2021).
  5. H. Zhu, Q. Li, C. Zheng, Y. Hong, Z. Xu, H. Wang, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, "High-temperature infrared camouflage with efficient thermal management," Light Sci. Appl. 9, 60 (2020).
  6. J.-S. Lim, N. Lee, T. Kim, I. Chang, J. Nam, and H. H. Cho, "Multiresonant selective emitter with enhanced thermal management for infrared camouflage," ACS Appl. Mater. Interfaces 16, 15416-15425 (2024).
  7. H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu, W. Shen, S. Kaur, P. Ghosh, and M. Qiu, "Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling," Nat. Commun. 12, 1805 (2021).
  8. L. Wang, J. Dong, W. Zhang, C. Zheng, and L. Liu, "Deep learning assisted optimization of metasurface for multi-band compatible infrared stealth and radiative thermal management," Nanomaterials 13, 1030 (2023).
  9. J. Kim, K. Han, and J. W. Hahn, "Selective dual-band metamaterial perfect absorber for infrared stealth technology," Sci. Rep. 7, 6740 (2017).
  10. T. Lim, S.-M. Jeong, K. Seo, J. H. Pak, Y. K. Choi, and S. Ju, "Development of fiber-based active thermal infrared camouflage textile," Appl. Mater. Today 20, 100624 (2020).
  11. Y. Wang, Y. Huang, L. Yuan, Q. Zhu, L. Qi, X. Y. Wu, and X. Weng, "The design and calculation of the infrared properties for low emissivity coatings dependent on the structure and distribution of flake Al pigments," Infrared Phys. Technol. 138, 105206 (2024).
  12. L. Phan, W. G. Walkup IV, D. D. Ordinario, E. Karshalev, J.-M. Jocson, A. M. Burke, and A. A. Gorodetsky, "Reconfigurable infrared camouflage coatings from a cephalopod protein," Adv. Mater. 25, 5621-5625 (2013).
  13. Z. Meng, C. Tian, C. Xu, J. Wang, X. Li, S. Huang, Q. Fan, and S. Qu, "Optically transparent coding metasurface with simultaneously low infrared emissivity and microwave scattering reduction," Opt. Express 28, 27774-27784 (2020).
  14. J. Hu, Y. Hu, Y. Ye, and R. Shen, "Unique applications of carbon materials in infrared stealth: A review," Chem. Eng. J. 452, 139147 (2023).
  15. S. P. Mahulikar, S. K. Potnuru, and G. A. Rao, "Study of sunshine, skyshine, and earthshine for aircraft infrared detection," J. Opt. A: Pure Appl. Opt. 11, 045703 (2009).
  16. S. Gao, W. Jin, J. Wang, H. Wang, H. Li, and A. Guo, "Study on camouflage effect of targets with different characteristics under typical background," Proc. SPIE 7656, 765652 (2010).
  17. T. Kim, T. Kim, J.-Y. Bae, D. Jung, and H. H. Cho, "Infrared signature analysis on armored vehicle applied with emissivity controlled structure," J. Comput. Struct. Eng. Inst. Korea 30, 179-184 (2017).
  18. J. Westin, O. Olsson, L. Pettersson, P. Lindwall, and A. Grop, "Active control of infrared signature: System implementation in a ground vehicle," Proc. SPIE 5075, 39-48 (2003).
  19. K. Han, H. B. Shim, and J. W. Hahn, "Optically transparent single-layer frequency-selective surface absorber for dual-band millimeter-wave absorption and low-infrared emissivity," Adv. Photonics Res. 4, 2200009 (2023).
  20. C. Xu, B. Wang, M. Yan, Y. Pang, W. Wang, Y. Meng, J. Wang, and S. Qu, "An optical-transparent metamaterial for high-efficiency microwave absorption and low infrared emission," J. Phys. D: Appl. Phys. 53, 135109 (2020).
  21. H. B. Shim, K. Han, J. Song, and J. W. Hahn, "A multispectral single-layer frequency selective surface absorber for infrared and millimeter wave selective bi-stealth," Adv. Opt. Mater. 10, 2102107 (2022).
  22. S. Hong, S. Shin, and R. Chen, "An adaptive and wearable thermal camouflage device," Adv. Funct. Mater. 30, 1909788 (2020).
  23. J. W. Hahn and C. Rhee, "Reference wavelength method for a two-color pyrometer," Appl. Opt. 26, 5276-5279 (1987).
  24. J. L. Gardner, "Effective wavelength for multicolor/pyrometry," Appl. Opt. 19, 3088-3091 (1980).
  25. J. W. Salisbury and D. M. D'Aria, "Emissivity of terrestrial materials in the 8-14 ㎛ atmospheric window," Remote Sens. Environ. 47, 345-361 (1994).
  26. J. A. Sobrino, J. C. Jimenez-Munoz, and L. Paolini, "Land surface temperature retrieval from LANDSAT TM 5," Remote Sens. Environ. 90, 434-440 (2004).
  27. W. C. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng, "Classification-based emissivity for land surface temperature measurement from space," Inter. J. Remote Sens. 19, 2753-2774 (1998).