DOI QR코드

DOI QR Code

Mesorhizobium koreense sp. nov., Isolated from Soil

  • Hyosun Lee (Department of Biological Science, College of Science and Engineering, Sangji University) ;
  • Dhiraj Kumar Chaudhary (Department of Microbiology, Pukyong National University) ;
  • Dong-Uk Kim (Department of Biological Science, College of Science and Engineering, Sangji University)
  • Received : 2024.04.16
  • Accepted : 2024.06.04
  • Published : 2024.09.28

Abstract

An aerobic, Gram-stain-negative, catalase-positive, rod-shaped, and motile bacteria, designated as a strain WR6T was isolated from soil in Republic of Korea. Strain WR6T grew at temperatures of 10-37℃, at pH of 5.0-9.0, and at NaCl concentrations of 0-3.0% (w/v). Phylogenetic and 16S rRNA gene nucleotide sequence analysis confirmed that strain WR6T affiliated to the genus Mesorhizobium, with the nearest relative being Mesorhizobium waimense ICMP 19557T (98.5%). The genome of strain WR6T was 5,035,462 bp with DNA G+C content of 62.6%. In strain WR6T, Q-10 was sole ubiquinone; summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c were predominant fatty acids; and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylcholine, and phosphatidylethanolamine were major polar lipids. Based on these polyphasic taxonomic data, strain WR6T represents a novel species in the genus Mesorhizobium. Accordingly, we propose the name Mesorhizobium koreense sp. nov., with the type strain WR6T (=KCTC 92695T =NBRC 116021T).

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202203112).

References

  1. Shahwar D, Mushtaq Z, Mushtaq H, Alqarawi AA, Park Y, Alshahrani TS, et al. 2023. Role of microbial inoculants as bio fertilizers for improving crop productivity: a review. Heliyon 9: e16134. 
  2. Krick A, Kehraus S, Eberl L, Riedel K, Anke H, Kaesler I, et al. 2007. A marine Mesorhizobium sp. produces structurally novel long-chain N-acyl-L-homoserine lactones. Appl. Environ. Microbiol. 73: 3587-3594. 
  3. Shahid M, Khan MS, Syed A, Marraiki N, Elgorban AM. 2021. Mesorhizobium ciceri as biological tool for improving physiological, biochemical and antioxidant state of Cicer aritienum (L.) under fungicide stress. Sci. Rep. 11: 9655. 
  4. Mir MI, Kumar BK, Gopalakrishnan S, Vadlamudi S, Hameeda B. 2021. Characterization of rhizobia isolated from leguminous plants and their impact on the growth of ICCV 2 variety of chickpea (Cicer arietinum L.). Heliyon 7: e08321. 
  5. Teng Y, Li X, Chen T, Zhang M, Wang X, Li Z, et al. 2016. Isolation of the PCB-degrading bacteria Mesorhizobium sp. ZY1 and its combined remediation with Astragalus sinicus L. for contaminated soil. Int. J. Phytoremediation 18: 141-149. 
  6. Sierra EM, Pereira MR, Maester TC, Gomes-Pepe ES, Mendoza ER, Lemos EGdM. 2017. Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis. Sci. Rep. 7: 10684. 
  7. Biswas B, Gresshoff PM. 2014. The role of symbiotic nitrogen fixation in sustainable production of biofuels. Int. J. Mol. Sci. 15: 7380-7397. 
  8. Roesler BCS, Vaz RG, Castellane TCL, de Macedo Lemos EG, Burkert CAV. 2021. The potential of extracellular biopolymer production by Mesorhizobium sp. from monosaccharide constituents of lignocellulosic biomass. Biotechnol. Lett. 43: 1385-1394. 
  9. Jarvis B, Van Berkum P, Chen W, Nour S, Fernandez M, Cleyet-Marel J, et al. 1997. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. Syst. Bacteriol. 47: 895-898. 
  10. Jung YJ, Kim HJ, Hur M. 2020. Mesorhizobium terrae sp. nov., a novel species isolated from soil in Jangsu, Korea. Antonie Van Leeuwenhoek 113: 1279-1287. 
  11. Meng D, Liu YL, Zhang JJ, Gu PF, Fan XY, Huang ZS, et al. 2022. Mesorhizobium xinjiangense sp. nov., isolated from rhizosphere soil of Alhagi sparsifolia. Arch. Microbiol. 204: 29. 
  12. Zheng WT, Li Jr Y, Wang R, Sui XH, Zhang XX, Zhang JJ, et al. 2013. Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int. J Syst. Evol. Microbiol. 63: 2002-2007. 
  13. De Meyer SE, Wee Tan H, Heenan PB, Andrews M, Willems A. 2015. Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int. J Syst. Evol. Microbiol. 65: 3419-3426. 
  14. Lu YL, Chen WF, Wang ET, Han LL, Zhang XX, Chen WX, et al. 2009. Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana species. Int. J. Syst. Evol. Microbiol. 59: 3012-3018. 
  15. Wang E, Van Berkum P, Sui X, Beyene D, Chen W, Martinez-Romero E. 1999. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int. J Syst. Evol. Microbiol. 49: 51-65. 
  16. Yuan CG, Jiang Z, Xiao M, Zhou E-M, Kim CJ, Hozzein WN, et al. 2016. Mesorhizobium sediminum sp. nov., isolated from deep-sea sediment. Int. J Syst. Evol. Microbiol. 66: 4797-4802. 
  17. Fu Gy, Yu Xy, Zhang Cy, Zhao Z, Wu D, Su Y, et al. 2017. Mesorhizobium oceanicum sp. nov., isolated from deep seawater. Int. J Syst. Evol. Microbiol. 67: 2739-2745. 
  18. Siddiqi MZ, Thao NTP, Choi G, Kim D-C, Lee Y-W, Kim SY, et al. 2019. Mesorhizobium denitrificans sp. nov., a novel denitrifying bacterium isolated from sludge. J. Microbiol. 57: 238-242. 
  19. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74: 2461-2470. 
  20. Chaudhary DK, Kim DU, Kim D, Kim J. 2019. Flavobacterium petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil. Sci. Rep. 9: 4134. 
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J Syst. Evol. Microbiol. 67: 1613-1617. 
  22. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. 
  23. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. 
  24. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. 
  25. Lee I, Chalita M, Ha SM, Na SI, Yoon SH, Chun J. 2017. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 67: 2053-2057. 
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25: 1043-1055. 
  27. Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203-214. 
  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. 
  29. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75. 
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. 
  31. Yoon SH, Ha Sm, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286. 
  32. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51: W46-W50. 
  33. Meier-Kolthoff JP, Goker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182. 
  34. Lefort V, Desper R, Gascuel O. 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32: 2798-2800. 
  35. Senghor B, Bassene H, Khelaifia S, Robert C, Fournier P-E, Ruimy R, et al. 2019. Oceanobacillus timonensis sp. nov. and Oceanobacillus senegalensis sp. nov., two new moderately halophilic, Gram-stain positive bacteria isolated from stools sample of healthy young Senegalese. Antonie Van Leeuwenhoek 112: 785-796. 
  36. Lee H, Chaudhary DK, Lim OB, Lee KE, Cha IT, Chi WJ, et al. 2023. Paenibacillus caseinilyticus sp. nov., isolated forest soil. Int. J. Syst. Evol. Microbiol. 73: 006171. 
  37. Smibert RM, Krieg NR. 1994. Phenotypic characterization. In Gerhardt, P., Murray, R. G. E., Wood, W. A., and Krieg, N. R. (eds.), Methods for general and molecular bacteriology, pp. 607-654. ASM Press, Washington D.C., USA. 
  38. Sasser M. 1990. Bacterial identification by gas chromatographic analysis of fatty acid methyl esters (GC-FAME) (MIDI Technical Note 101. Newark, DE: MIDI Inc. 
  39. Komagata K, Suzuki KI. 1988. 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19: 161-207. 
  40. Stackebrandt E. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33: 152-155. 
  41. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, et al. 2008. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst. Appl. Microbiol. 31: 241-250. 
  42. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37: 463-464.