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Introduction
Mesorhizobium bacteria constitute a diverse array of soil-dwelling microorganisms essential for nitrogen

fixation, increasing soil nitrogen availability, enhancing crop yield, and diminishing reliance on chemical
fertilizers [1]. Additionally, Mesorhizobium species are renowned for their capacity to synthesize various enzymes
and secondary metabolites [2, 3]. Reports indicate that Mesorhizobium species can release cellulase, proteases,
lipases, and exopolysaccharides, rendering them applicable in bioremediation, bioconversion, and biopharmaceuticals
[4-6]. Moreover, Mesorhizobium strains contribute substantially to producing biofuel and biopolymers [7, 8].
These attributes underscore the promising role of Mesorhizobium strains in sustainable crop production,
biotechnological innovation, and industrial applications. Consequently, exploring Mesorhizobium strains from
diverse environments is imperative for harnessing their potential as valuable industrial bioresources. 

The Mesorhizobium genus belongs to the family Phyllobacteriaceae within the phylum Pseudomonadota and
was proposed by Jarvis et al. in 1997, designating Mesorhizobium loti as the type species [9]. Mesorhizobium
members are aerobic, Gram-negative, non-spore-forming, and rod-shaped bacteria widely recognized for their
nitrogen fixation capabilities. The primary respiratory quinone system is ubiquinone-10, and the DNA G+C
content ranges between 59.0%–64.0% [10-12]. As of May 2024, the genus Mesorhizobium comprises 63 valid
species with accurate names (https://lpsn.dsmz.de/genus/mesorhizobium). These bacteria exhibit habitat
versatility and are commonly isolated from root nodules of various plants [12-15]. Beyond nodular environments,
Mesorhizobium species have also been found in seawater, soil, sediment, coal bed water, and sludge [10, 16-18]. In
this study, we conducted a taxonomic investigation of strain WR6T isolated from a soil sample. The presented
taxonomic data confirm that strain WR6T represents a novel species within the genus Mesorhizobium.

Materials and Methods
Isolation of Strain

Strain WR6T was isolated from a soil sample collected from the Republic of Korea (36°33'15.1"N 126°54'05.0"E).
A standard dilution plating technique with R2A media (MB Cell) was employed for the isolation. Subsequently,
the plates were incubated aerobically at 25°C for one week. Following multiple streaking on R2A agar, pure
colonies of strain WR6T were obtained and preserved at 4°C until taxonomic analysis was completed. For long-
term preservation, strain WR6T was stored in R2A broth supplemented with 20% (v/v) glycerol stock at -80°C.

16S rRNA Gene Sequence and Phylogenetic Analysis
Genomic DNA from strain WR6T was extracted using the HiGene Genomic DNA Prep Kit (BIOFACT,

Republic of Korea). PCR was performed to amplify the 16S rRNA gene using the 27F and 1492R primer set [19].
Subsequently, the amplified gene was sequenced and analyzed following standard protocols [20]. The closest
phylogenetically related taxa were identified by analyzing the 16S rRNA gene sequences on the EzBioCloud
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database server [21]. Phylogenetic trees based on the 16S rRNA gene and two housekeeping genes (gyrase subunit
B, gyrB; and RNA polymerase subunit B, rpoB) were generated using MEGA X [22] through maximum–
likelihood (ML) [23] and neighbor-joining (NJ) algorithms [22]. The tree topologies were estimated using the
bootstrap resampling method with 1,000 replications [23], and the evolutionary distances were calculated using
Kimura's two-parameter model [24].

Genome Analysis
The genome sequencing of strain WR6T was conducted using the PacBio sequencing technique, and assembly

of the raw sequences was performed with NextDenovo v. 2.4.0. Quality assessment of the genome data was carried
out using the ContEst16S algorithm [25], CheckM [26], and Blast-N tool [27]. Subsequently, the genome
sequence was annotated using the prokaryotic genome annotation pipeline (PGAP) [28] and the rapid annotation
subsystem technology (RAST) server [29]. The DNA G+C content was determined from the genome sequence
data. Genomic relatedness between strain WR6T and the closest species was assessed using digital DNA–DNA
hybridization (dDDH) [30] and average nucleotide identity (ANI) [31] web-based tools. Gene clusters for
putative secondary metabolites were also investigated using antiSMASH 7.0 [32]. A phylogenomic tree was
generated on the type (Strain) genome server with the FastME 2.1.6.1 tool [33, 34].

Morphology, Physiology, and Biochemical Analysis
The cell structure of the strain WR6T was analyzed using transmission electron microscopy (Talos; FEI) after

culturing on R2A agar at 25°C for three days, following previously described methods [35]. Gram-staining
reactions were carried out with the Color Gram 2 kit (bioMérieux, France) following the manufacturer’s
instructions. As described previously, catalase, oxidase, motility, and anaerobic growth ability were assessed [20].
The temperature, NaCl, and pH range for optimal growth were evaluated using previously illustrated methods
[36]. Hydrolysis of DNA, CM-cellulose, casein, starch, and Tween 80 were analyzed following standard protocols
[37]. Other enzymatic, biochemical, and carbon assimilation properties were determined using API ID 32 GN,
API 20NE, and API ZYM kits (bioMérieux).

Chemotaxonomic Characterization
Strain WR6T and other closest taxa of the genus Mesorhizobium were cultured at 25°C on R2A agar for three

days. Biomass was harvested and utilized for fatty acid extraction, analysis, and identification following the MIDI
protocol [38]. Freeze-dried cells were prepared after growing strain WR6T at 25°C on R2A agar for three days.
Polar lipids and quinones were analyzed from freeze-dried cells [41, 42]. Polar lipid spots in the chromatograms
were detected using various reagents [39]. 

Results and Discussion
The 16S rRNA gene nucleotide sequence of strain WR6T was 1,416 bp. Analysis of the 16S rRNA gene nucleotide

sequence revealed that strain WR6T belonged to the genus Mesorhizobium, with the closest phylogenetic species
being Mesorhizobium waimense ICMP 19557T (98.5%). The 16S rRNA gene sequence similarities between strain
WR6T and all closest genetic neighbors were below the specified cut-off values of < 98.7%, as established for
species demarcation [40, 41]. Both phylogenetic trees (ML and NJ) based on the 16S rRNA gene showed that strain
WR6T formed a clade with Mesorhizobium alexandrii Z1-4T (Figs. 1 and S1), whereas phylogenetic trees (ML)
based on the gyrB and rpoB genes generated a separate lineage for strain WR6T within the members of the genus
Mesorhizobium (Figs. S2 and S3).

The quality check confirmed the validity of the genome sequence of strain WR6T, displaying 92.0% completeness
and 2.2% contamination. Strain WR6T exhibited a genome size of 5,035,462 bp, with a DNA G+C content of
62.6%. The entire genome sequence of WR6T was assembled into a single contig with a genome coverage of 124.0x
(Table S1). RAST annotation revealed 338 subsystem features in strain WR6T (Fig. S4). Analysis of biosynthetic
gene clusters indicated the presence of genes encoding for ectoine, betalactone, and arylpolyene (Table S2). The
dDDH and ANI values between strain WR6T and its closest neighbors (Mesorhizobium waimense ICMP 19557T

and Mesorhizobium amorphae NBRC 102496T) ranged from 20.0% to 20.1% and 75.4% to 75.6%, respectively.
These genomic relatedness values fell far below the established threshold values of 70.0% (for dDDH) [42] and
95.0% (for ANI) [42], indicating substantial genomic divergence of strain WR6T from all other members of the
genus Mesorhizobium. The phylogenomic tree illustrated that strain WR6T formed distinct lineage within the
genus Mesorhizobium (Fig. S5), consistent with the results of the phylogenetic tree analysis.

Cells of strain WR6T were Gram-stain-negative, motile, rod-shaped, and flagellated (Fig. S6). Strain WR6T

exhibited growth at a temperature range of 10°C–30°C (optimum 25°C), a pH range of 5.0–8.5 (optimum 7.0), and
a NaCl concentration of 3.0% (w/v) (optimum without NaCl). Catalase was positive, whereas oxidase was
negative. Strain WR6T was unable to hydrolyze esculin, starch, Tween 80, casein, DNA, urea, gelatin, and cellulose.
Alkaline phosphatase, valine arylamidase, and α-glucosidase were negative, whereas trypsin, α-galactosidase, and
β-galactosidase were positive for strain WR6T. The major distinguishing features of strain WR6T are described in
the species protologue and presented in Table 1 alongside the closest reference taxa. All data regarding enzyme
activities and carbon assimilation properties resulting from API kits are displayed in Table S3.

The only ubiquinone detected in strain WR6T was Q-8, similar to other species of the genus Mesorhizobium [12,
13]. Strain WR6T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine,
phosphatidylcholine, and phosphatidylethanolamine. Additionally, unidentified aminolipids (AL1-AL2) were
visualized (Fig. S7). The major polar lipids were similar to other species within the genus Mesorhizobium [10, 12].
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The principal cellular fatty acids detected in strain WR6T were summed feature 8 (C18:17c and C18: 1 6c; 49.2%)
and C19:0 cyclo ω8c (14.0%). The profile of principal cellular fatty acids resembles that of the closest species within
the Mesorhizobium genus. However, the composition of minor fatty acids differed proportionally between strain
WR6T and the closest taxa (Table 2).

Fig. 1. Maximum likelihood tree based on 16S rRNA gene sequences of strain WR6T and closely affiliated
reference taxa. Nodes recovered by maximum-likelihood and neighbor-joining trees are represented by filled circles. The
numbers at branch nodes are percentage of 1,000 bootstrap replicates (values >70% are only illustrated). NCBI GenBank
accession numbers for 16S rRNA gene sequences are provided in parentheses. Caulobacter vibrioides CB 51T was used as an out-
group. The scale bar indicated 0.02 substitutions per nucleotide position.
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Taxonomic Conclusion
In conclusion, the taxonomic data presented here confirm that the isolate WR6T represents a novel species

within the genus Mesorhizobium for which the name Mesorhizobium koreense sp. nov. is proposed.

Description of Mesorhizobium koreense sp. nov. 
Mesorhizobium koreense sp. nov. (ko.re.en’se. N.L. neut. adj. koreense pertaining to Korea).
Cells (4.2–4.3 × 2.4–2.5 μm) are aerobic, Gram-stain-negative, rod-shaped, flagellated, and motile. Colonies are

white-coloured, circular, and convex with the diameter of 4.4–5.8 mm. Cells grow at temperature of 10–30°C
(optimum 25°C), at pH of 5.0–8.5 (optimum 7.0), and at NaCl content of 0–3.0% (w/v) (optimum without NaCl).
Cells are positive for catalase activity. Negative for oxidase, nitrate reduction, esculin, starch, Tween 80, casein,
DNA, urea, gelatin, and cellulose hydrolysis. Positive for esterase (C4), esterase lipase (C8), leucine arylamidase,
trypsin, acid phosphatase, naphtol-AS-BI-phosphohydrolase, α-galactosidase, and β-galactosidase. Assimilates
L-arabinose, D-mannitol, N-acetyl-D-glucosamine, D-melibiose, D-sorbitol, propionate, 3-hydroxy-butyrate, L-
proline, inositol, acetate, lactate, and glycogen. The only ubiquinone is Q-10; key cellular fatty acids are summed

Table 1. Differentiating properties of strain WR6T and closely affiliated reference taxa.
Characteristic 1 2 3

Growth temperature (˚C) 10–30 15–30 10–35
Highest salt tolerance (%, w/v) 3.0 8.0 0.5
pH range 5.0–8.5 5.0–8.0 5.5–8.0
Catalase/oxidase +/- +/- +/-
Esculin - - -

Enzyme activity 
Alkaline phosphatase - + +
Esterase Lipase (C8) + - +
Valine arylamidase - - -
Trypsin + - -
α-Galactosidase + - -
β-Galactosidase + - -
β-Glucuronidase - + -
α-Glucosidase - + +
β-Glucosidase - - -

Assimilation from
(API 20NE and ID 32 GN test)
D-Glucose - + +
L-Arabinose + + -
D-Mannose - + +
D-Maltose - + +
Malate - + +
Citrate - + -
Phenyl-acetate - + -
D-Melibiose + + -
L-Fucose - + -
D-Sorbitol + + -
Propionate + + -
Valerate - - -
3-Hydroxy-butyrate + - -
L-Proline + - -
L-Rhamnose - + +
D-Ribose - - -
Inositol + + +
D-Sucrose - + +
Acetate + - -
Lactate - - -
L-Alanine - - -
Glycogen + - -
L-Serine - - -
DNA G + C content (%) 62.6 62.4 62.9

Strains: 1, WR6T; 2, Mesorhizobium waimense LMG 28228T; 3, Mesorhizobium amorphae NBRC 102496T. All data were obtained
in this study. The data for G+C content was computed from genome sequences. +, positive; -, negative.
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feature 8 (C18:17c and/or C18: 1 6c) and C19:0 cyclo ω8c; and predominant polar lipids are diphosphatidylglycerol,
phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylcholine, and phosphatidylethanolamine.
The DNA G+C content is 62.6%. 

The type strain, WR6T (=KCTC 92695T =NBRC 116021T)., was isolated from soil samples collected from
Republic of Korea (36°33'15.1"N 126°54'05.0"E).

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA nucleotide and genome sequences of strain
WR6T are ON810355 and CP134228, respectively.

Abbreviations
KCTC: Korean Collection for Type Cultures
NBRC: NITE Biological Resource Center: Deutsche
BGCs: Biosynthetic gene clusters
ANI: Average nucleotide identity
dDDH: Digital DNA-DNA hybridization
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Table 2. Cellular fatty acid profiles of strain WR6T and related reference members.
Fatty acid 1 2 3
Saturated

C10:0 1.0 – –
C12:0 1.0 – tr
C14:0 2.2 – tr
C16:0 8.3 14.0 12.4 
C17:0 – – tr
C18:0 2.0 1.6 3.8 
C20:0 – – tr

Unsaturated
C17:1 ω6c – – –
C18:1 ω9c – – tr
C20:1 ω7c – – tr

Branched saturated
iso-C10:0 1.0 – –
iso-C13:0 – – –
iso-C13:0 3OH – – tr
iso-C15:0 8.3 – tr
iso-C15:0 3OH 1.0 – –
iso-C17:0 1.1 2.6 1.8 
iso-C18:0 – – tr
anteiso-C17:1 ω9c – 4.0 tr
C10:0 ω7c 11-methyl – 3.2 5.6 

Hydroxyl fatty acid – – –
C18:1 2OH tr – –

Cyclo
C17:0 cyclo 1.2 – –
C19:0 cyclo ω8c 14.0 4.3 1.4 

Summed features*

3 9.2 2.3 tr
8 49.2 65.3 68.8 

Strains: 1, WR6T; 2, Mesorhizobium waimense LMG 28228T; 3, Mesorhizobium amorphae NBRC 102496T. All data were obtained
in this study. The data are presented in % of totals. TR, trace amount (<1.0%); –, not detected. 
*Summed features represent groups of two or three fatty acids that could not be separated using the MIDI system. Summed
feature 3 comprised C16:17c and/or C16:1 6c and Summed feature 8 comprised C18:17c and/or C18: 1 6c. Unknown fatty acids
are designated by their ECL, relative to the chain lengths of known straight-chain saturated fatty acids.
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