DOI QR코드

DOI QR Code

5G and Internet of Things: Next-Gen Network Architecture

  • Ahmed Jumaa Lafta (Department of Electronic and Communications Engineering, College of Engineering, Al-Nahrain University) ;
  • Aya Falah Mahmood (Department of Prosthetics and Orthotics Engineering, College of Engineering, Al-Nahrain University) ;
  • Basma Mohammed Saeed (Department of Electronic and Communications Engineering, College of Engineering, University of Baghdad)
  • 투고 : 2024.05.24
  • 심사 : 2024.07.28
  • 발행 : 2024.09.30

초록

This study examined the integrated benefits of 5G New Radio, network slicing, and reinforcement learning (RL) mechanisms in addressing the challenges associated with the increasing proliferation of intelligent objects in communication networks. This study proposed an innovative architecture that initially employed network slicing to efficiently segregate and manage various service types. Subsequently, this architecture was enhanced by applying RL to optimize the subchannel and power allocation strategies. This dual approach was proven through simulation studies conducted in a suburban setting, highlighting the effectiveness of the method for optimizing the use of available frequency bands. The results highlighted significant improvements in mitigating interference and adapting to the dynamic conditions of the network, thereby ensuring efficient dynamic resource allocation. Further, the application of an RL algorithm enabled the system to adjust resources adaptively based on real-time network conditions, thereby proving the flexibility and responsiveness of the scheme to changing network scenarios.

키워드

과제정보

We would like to thank Editage (www.editage.co.kr) for English language editing.

참고문헌

  1. E. Esenogho, K. Djouani, and A. M. Kurien, "Integrating artificial intelligence internet of things and 5G for next-generation smartgrid: A survey of trends challenges and prospect," IEEE Access, vol. 10, pp. 4794-4831, 2022. DOI: 10.1109/ACCESS.2022.3140595.
  2. D. Chandramouli, R. Liebhart, and J. Pirskanen, "Next generation network architecture," in 5G for the Connected World, 2019, pp. 127-223, Available: https://sci-hub.st/10.1002/9781119247111.ch4.
  3. R. Xu, Y. Chen, X. Li, and E. Blasch, "A secure dynamic edge resource federation architecture for cross-domain IoT systems," in 2022 International Conference on Computer Communications and Networks (ICCCN), Honolulu: USA, pp. 1-7, 2022. DOI: 10.1109/ICCCN54977.2022.9868843.
  4. A. Dogra, R. K. Jha, and S. Jain, "A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies," IEEE Access, vol. 9, pp. 67512-67547, 2021. DOI: 10.1109/ACCESS.2020.3031234.
  5. S. Sadjina, C. Motz, T. Paireder, M. Huemer, and H. Pretl, "A survey of self-interference in LTE-Advanced and 5G new radio wireless transceivers," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 3, pp. 1118-1131, 2020. DOI: 10.1109/TMTT.2019.2951166.
  6. G. K. Xilouris, M. C. Batistatos, G. E. Athanasiadou,G. Tsoulos, H. B. Pervaiz, and C. C. Zarakovitis, "UAV- assisted 5G network architecture with slicing and virtualization," in 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi: AE, pp. 1-7, 2018. DOI: 10.1109/GLOCOMW.2018.8644408.
  7. P. Subedi, A. Alsadoon, P. P.W.C, S. Rehman, N. Giweli, M. Imran, and S. Arif, "Network slicing: A next generation 5G perspective," EURASIP Journal on Wireless Communications and Networking, vol. 2021, 2021. DOI: 10.1186/s13638-021-01983-7.
  8. M. Gupta, R. K. Jha, and S. Jain, "Tactile based intelligence touch technology in IoT configured WCN in B5G/6G-A survey," IEEE Access, vol. 11, pp. 30639-30689, 2022. DOI: 10.1109/ACCESS.2022.3148473.
  9. J. Cao, M. Ma, H. Li, R. Ma, Y. Sun, P. Yu, and L. Xiong, "A survey on security aspects for 3GPP 5G networks," IEEE Communications Surveys and Tutorials, vol. 22, no. 1, pp. 170-195, 2019. DOI: 10.1109/COMST.2019.2951818.
  10. S. Brihi, A. Ghamizi, and K. Chakri, "UAV for IoT communications: Beam selection using matching game and network slicing," in 2020 8th International Conference on Wireless Networks and Mobile Communications (WINCOM), Reims: FR, pp. 1-7, 2020. DOI: 10.1109/WINCOM50532.2020.9272510.
  11. K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, "Internet of things (IoT) for next-generation smart systems: A review of currentchallenges, future trends and prospects for emerging 5G-IoT scenarios," IEEE Access, vol. 8, pp. 23022-23040, 2020. DOI: 10.1109/ACCESS.2020.2970118.
  12. M. Rohen, "IoT EU strategy, state of play and future perspectives," in Next Generation Internet of Things Distributed Intelligence at the Edge and Human Machine Interactions, 1st ed., New York, USA: River Publishers, ch.1, pp. 8, 2018.
  13. O. Vermesan, M. Eisenhauer, M. Serrano, P. Guillemin, H. Sundmaeker, E.Z. Tragos, J. Valino, B. Copigneaux, M. Presser, A. Aagaard, R. Bahr, and E.C. Darmois, "The next generation internet of things - Hyperconnectivity and embedded intelligence at the edge," in Next Generation Internet of Things-Distributed Intelligence at the Edge and Human - Machine Interactions, 1st ed., New York, USA: River Publishers, ch. 3, pp.84, 2018.
  14. E. Ferrera, C. Pastrone, P. E. Brun, R. Besombes, K. Loupos, G. Kouloumpis, P. O' Sullivan, A. Papageorgiou, P. Katsoulakos, B. Karakostas, A. Mygiakis, C. Stratigaki, B. Caglayan, B. Starynkevitch, C. Skoufis, S. Christofi, N. Ferry, H. Song, A. Solberg, P. Matthews, A. F. Skarmeta, J. Santa, M. J. Beliatis, M. A. Presser, J. X. Parreira, J. A. Martinez, P. Barnaghi, S. Enshaeifar, T. Iggena, M. Fischer, R. Tonjes, M. Strohbach, A. Sforzin, H. Truong, J. Soldatos, S. Efremidis, G. Koutalieris, P. Gouvas, J. Neises, G. Hatzivasilis, I. Askoxylakis, V. Kulkarni, A. Broering, D. Dober, K. Ramantas, C. Verikoukis, J. Posegga, D. Presenza, G. Spanoudakis, D. Pau, E. Gelenbe, S. Nowak, M. Nowak, T. Czachorski, J. Domanska, A. Drosou, D. Tzovaras, T. Elo, S. Paavolainen, D. Lagutin, H. C. Leligou, P. Trakadas, and G. C. Polyzos, "IoT European security and privacy projects: Integration, architectures and interoperability," in Next Generation Internet of Things Distributed Intelligence at the Edge and Human-Machine Interactions, 1st ed., New York, USA: River Publishers, ch. 7, pp. 87. 2018.
  15. B. K. Tripathy and J. Anuradha, Internet of Things(IoT): Technologies, Applications, Challenges and Solutions, 1st ed., Florida, FL: CRC Press, 2018.
  16. S. K. Tayyaba, H.A.Khattak, A. Almogren, M. A. Shah, I. U. Din, I. Alkgalifa, and M. Guizani, "5G vehicular network resource management for improving radio access through machine learning," IEEE Access, vol. 8, pp. 6792-6800, 2020. DOI: 10.1109/ACCESS.2020.2964697.
  17. M. Diaz Nava, A. Castillejo, S. Wuidart, M. Gallissot, N. Kaklanis, K. Votis, D. Tzovaras, A. Theodouli, K. Moschou, A. Kazmi, P. Dallemagne, C. Kassapoglou-Faist, S. Guillen, G. Fico, Y. Brunet, T. Loubier, S. Bergeon, M. Serrano, F. Roca, A. Medrano, and B. Ortiz Sanchez, "End-to-end security and privacy by design for AHA-IoT applications and services," in Next Generation Internet of Things - Distributed Intelligence at the Edge and Human-Machine Interactions, 1st ed., Denmark, DK: River Publishers, ch. 4, pp. 35, 2018.
  18. T. Taleb, A. Ksentini, and A. Kobbane, "Lightweight mobile core networks for machine type communications," IEEE Access, vol. 2, pp. 1128-1137, 2014. DOI: 10.1109/ACCESS.2014.2359649.
  19. A. Filali, Z. Mlika, S. Cherkaoui, and A. Kobbane, "Dynamic sdnbased radio access network slicing with deep reinforcement learning for urllc and embb services," IEEE Transactions on Network Science and Engineering, vol. 9, no. 4, pp. 2174-2187, 2022. DOI: 10.1109/TNSE.2022.3157274.
  20. G. M. Karam, M. Gruber, I. Adam, F. Boutigny, Y. Miche, and S. Mukherjee, "The evolution of networks and management in a 6G world: An inventor's view," IEEE Transactions on Network and Service Management, vol. 19, no. 4, pp. 5395-5407, 2022. DOI: 10.1109/TNSM.2022.3188200.
  21. O. A. Latif, M. Amer, and A. Kwasinski, "Achieving linear scaling in provisioning end-to-end network slicing," in 2022 IEEE Future Networks World Forum (FNWF), Montreal: QC, Canada, pp. 108-112, 2022. DOI: 10.1109/FNWF55208.2022.00028.
  22. T. Varum, A. Ramos, and J. N. Matos, "Planar microstrip series-fed array for 5G applications with beamforming capabilities," in 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), Dublin: Ireland, pp. 1-3, 2018 DOI: 10.1109/IMWS- 5G.2018.8484697.
  23. M. Amine, A. Walid, A. Kobbane, and S. Cherkaoui, "A many-tomany matching game in ultra- dense lte hetnets," in 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia: ES, pp. 1245-1250, 2017. DOI: 10.1109/IWCMC.2017.7986463.
  24. S. F. Jilani, Q. H. Abbasi, and A. Alomainy, "Inkjet-printed millimetre-wave PET-based flexible antenna for 5G wireless applications," in 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), Dublin: IE, pp. 1-3, 2018. DOI: 10.1109/IMWS-5G.2018.8484603.
  25. H. Li, Z. Kong, Y. Chen, L. Wang, Z. Lu, X. Wen, W. Jing, and W. Xiang "Slice-based service function chain embedding for end-to-end network slice deployment," in IEEE Transactions on Network and Service Management, vol. 20, no. 3, pp. 3652-3672, 2023. DOI: 10.1109/TNSM.2023.3250719.
  26. Y. Ai, G. Qiu, C. Liu, and Y. Sun, "Joint resource allocation and admission control in sliced fog radio access networks," China Communications, vol. 17, no. 8, pp. 14-30, 2020. DOI: 10.23919/JCC.2020.08.002.
  27. S. Wijethilaka and M. Liyanage, "Survey on network slicing for internet of things realization in 5G networks," IEEE Communications Surveys and Tutorials, vol. 23, no. 2, pp. 957-994, 2021. DOI: 10.1109/COMST.2021.3067807.
  28. H. Baba, S. Hirai, T. Nakamura, S. Kanemaru, K. Takahashi, T. Omoto, S. Akiyama, and S. Hirabaru, "End-to-end 5G network slice resource management and orchestration architecture," in 2022 IEEE 8th International Conference on Network Softwarization (NetSoft), Milan: IT, pp. 269-271, 2022. DOI: 10.1109/NetSoft54395.2022.9844088.
  29. A. M. Escolar, J. M. Alcaraz-Calero, P. Salva- Garcia, J. B. Bernabe, and Q. Wang, "Adaptive network slicing in multi-tenant 5G IoT networks," IEEE Access, vol. 9, pp. 14048-14069, 2021. DOI: 10.1109/ACCESS.2021.3051940.
  30. N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, "Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks," IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5141-5152, 2019. DOI: 10.1109/TWC.2019.2933417.
  31. A. El-mekkawi, X. Hesselbach, and J. R. Piney, "Evaluating the impact of delay constraints in network services for intelligent network slicing based on SKM model," Journal of Communications and Networks, vol. 23, no. 4, pp. 281-298, 2021. DOI: 10.23919/JCN.2021.000024.
  32. A. S. D. Alfoudi, M. Dighriri, A. Otebolaku, R. Pereira and G. M. Lee, "Mobility management architecture in different rats based network slicing," in 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), Krakow: PL, pp. 270-274, 2018. DOI: 10.1109/WAINA.2018.00097.
  33. M. Amine, A. Walid, A. Kobbane, and J. Othman, "New user association scheme based on multi-objective optimization for 5G ultra-dense multi-rat HetNets," in 2018 IEEE International Conference on Communications (ICC), Kansas City: USA, pp. 1-6, 2018. DOI: 10.1109/ICC.2018.8422154.
  34. O. A. Latif, M. Amer, and A. Kwasinski, "Achieving linear scaling in provisioning end-to-end network slicing," in 2022 IEEE Future Networks World Forum (FNWF), Montreal: CA, pp. 108-112, 2022. DOI: 10.1109/FNWF55208.2022.00028.
  35. H. U. Rashid and S. H. Jeong, "Deep learning-based network slice recognition," in 2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN), Paris: FR, pp. 297-299, 2023. DOI: 10.1109/ICUFN57995.2023.10199606.