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Abstract

This study examined the integrated benefits of 5G New Radio, network slicing, and reinforcement learning (RL) mechanisms in

addressing the challenges associated with the increasing proliferation of intelligent objects in communication networks. This

study proposed an innovative architecture that initially employed network slicing to efficiently segregate and manage various

service types. Subsequently, this architecture was enhanced by applying RL to optimize the subchannel and power allocation

strategies. This dual approach was proven through simulation studies conducted in a suburban setting, highlighting the

effectiveness of the method for optimizing the use of available frequency bands. The results highlighted significant

improvements in mitigating interference and adapting to the dynamic conditions of the network, thereby ensuring efficient

dynamic resource allocation. Further, the application of an RL algorithm enabled the system to adjust resources adaptively based

on real-time network conditions, thereby proving the flexibility and responsiveness of the scheme to changing network

scenarios.

Index Terms: Network Slicing, Power Control, Quality of Service, Reinforcement Learning

I. INTRODUCTION

The proliferation of smart objects, leading to increasing

interpersonal connectivity, raises serious concerns about the

performance of established mobile networks under the new

demands of recent developments. The rising need for Internet

connectivity and applications goes beyond traditional modes

of connectivity, such as 3G and 4G [1]. The heart of 5G New

Radio (NR) lies in its promise as a complete solution that

goes beyond traditional technologies [2]. This change is expected

to be revolutionary in addressing the complex challenges pre-

sented by the ever-growing number of smart devices and the

different types of applications that drive them [3]. Despite

these deficiencies among existing infrastructures, as operators

struggle to cope, 5G NR has emerged as a revolutionary con-

cept and promises to reform connectivity conventions. This

has resulted in an improved and reliable networking system.

This study proposed a novel paradigm that integrates 5G NR

and reinforcement learning (RL) to overcome these problems

[4].

The introduction of 5G networks has been accompanied by

several technologies, including network slicing, massive

multiple-input multiple-output (MIMO), and beamforming.

Network slicing is defined as the possibility of defining mul-

tiple logical networks over a single physical network to

adapt to the different requirements of an application [5].

However, the management and optimization of these net-

work slices are difficult, particularly when the requirements

of users and the state of the network change. To mitigate

these challenges, the following research questions are formu-

lated: In this study, RL techniques were incorporated with

5G NR technology. RL is a subcategory of machine learning
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(ML) that facilitates the design of systems capable of learn-

ing and autonomous optimization. Thus, by integrating RL

algorithms into 5G network management [6], we proposed a

design for an intelligent network capable of learning from

the environment and making decisions to improve perfor-

mance. The resource management can be strengthened, the

number of channels per unit area can be increased, and the

network parameters can be adapted to new quality of service

(QoS) demands.

The primary purpose was to consider the capabilities of

network slicing to improve the performance of 5G networks

by identifying major problems such as bit rate, delays, and

bandwidth. By incorporating RL algorithms into the net-

work, the network becomes responsive and facilitates effec-

tive subchannel assignment and power control. The adaptive

nature improves spectral efficiencies and adds flexibility to

provisioning for different QoS requirements [7].

II. BACKGROUND AND RELATED WORK

Intelligence has delved into the entirety of our lives It has

invaded our lives through a vast array of smart objects that

exchange information [8]. These devices are indispensable in

everyday routines that continuously increase their range of

services to simplify our lives. From simple intelligent trans-

formations of regular everyday objects, such as domestic

appliances to smart metropolises [10]. According to a recent

report by the Statista Research Department, more than 75

billion connected devices are expected to exist by 2025, that

is more than three times higher than that in 2019 [11].

Simultaneously, the escalating demand for connectivity and

smart services poses several challenges [12] that must be

addressed, such as upgrading the capacities of IoT networks

[13], strengthening network security, improving QoS [14],

and improving network performance during the optimization

of the energy resources of every connected device [15].

To address the- increasing challenges brought about by the

expanding network of connected devices and services, 5G-

IoT technology has emerged as a viable solution. With cre-

ative designs, abilities, and substantial data transmission

rates, it is a key player [16]. Positioned as the best solution

when compared to its predecessors in mobile network tech-

nologies, and several studies have focused on identifying the

optimal model for deploying 5G-IoT networks. Rahimi et al.

[17] proposed a novel 5G-IoT network model that integrated

cutting-edge technologies, including machine communica-

tion, device communication, and any wireless or software

communication, along with the known functions of net-

works.

The integration of these applications enhances the effi-

ciency of the planned theory compared with conventional

architectures. QoS paradigms and three-level architectures

[18,19] are important aspects. Other studies have focused on

the leveraging of 5G technology, particularly in the context

of authenticating IoT architecture. Torroglosa-Garcia et al.

[20] introduced a relinquishing wander framework for lever-

aging the dependable 5G network for key management and

authentication of IoT devices. This approach ensured the

interoperability between 5G and LoRaWAN, showcasing

their properties and services in terms of security. In a differ-

ent scenario where 5G is deployed to ensure a specific QoS

for many communicating IoT devices [21], Asad et al. pro-

posed a framework based on a client’s entry into their

devices in a scenario featuring several radio access technolo-

gies. This method facilitates the definition of node-specific

QoS requirements for every device, ensuring enhanced net-

work sociability [22]. The algorithm surpasses conventional

access node selection techniques, such as the best signal-to-

noise ratio (B-SNR) and maximum bandwidth (M-BW),

thereby presenting a promising perspective for the future of

5G in empowering IoT networks with robust infrastructure

and innovative smart services [23].

In parallel, Gupta et al. [24] enriched the discourse by

examining the 5G-IoT architecture, offering fundamental

insights, and suggesting a stratified 5G-IoT substructure based

on important applications such as software-defined network-

ing. The results of this synthesis reinforce the efficacy of the

proposed framework and the argument that 5G is the optimal

method to empower IoT systems. Although there is signifi-

cance in the search endeavors that contribute to the expand-

ing knowledge base of IoT networks and strive to overcome

the encountered challenges, the 5G-IoT infrastructure grap-

ples with persistent interference effects stemming from the

prolific transmissions of numerous devices [25].

Network slicing (NS) assumes a pivotal role in advancing

the 5G-IoT framework, designed to cater to diverse require-

ments [26]. The model delineates three scenarios with high

reliability: 5G mobile broadband (MBB), 5G massive IoT

(MIoT), and 5G ultralow latency high reliability [27]. This

effort combines the two initial use cases to address the

resulting environmental requirements. Lin et al. [28] con-

firmed the efficacy of NS in satisfying the demands of 5G-

IoT applications, specifically investigating three cases in

their performance evaluation.

Using SimTalk as an imitator for IoT employment collec-

tion, they replicated the transport NS traffic and evaluated

the efficiency of the proposal concerning any loss of packets

and poor performance. The proposed slicing diffusion net-

work performance yielded noteworthy results. Escolar et al.

[29] introduced an NS model for 5G-IoT networks based on

an SDN approach, dynamically overseeing a diverse array of

mixed IoT network slices as needed. Several practical verti-

cally oriented IoT situations were considered to empirically

verify the proposed application.

The results confirmed that the proposed framework deliv-
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ers compelling advantages in terms of flexibility, stability,

isolation, and fulfillment of rigorous QoS requirements, even

in intricate scenarios. Addressing the allocation of resources

is paramount in 5G-IoT networks, particularly within the

framework of the network-slicing architecture [30]. This

architectural framework demands independent allocation of

diverse resources among different slices, each providing var-

ious services to meet the QoS requirements of the devices.

Fossati et al. [30] focused on the complexities of equitable

needs distribution to other slices, particularly in scenarios

wherein the network grappled with insufficient resources to

fulfill all slice demands. They conceptualized this challenge

as several distributions, which created a problem, thereby

introducing a versatile optimization framework employing

the ordered weighted average (OWA) method. This approach

facilitated the implementation of new multi-resource alloca-

tion schemes in addition to existing ones.

Wang et al. [31] reported another innovative perspective,

exploring NS dimensioning alongside a resource-pricing

strategy. The dimensioning framework introduces the slice

customer problem (SCP) to improve the problem we obtain

and the slice provider problem (SPP) to boost net social

well-being, that is, resource efficiency. The study revealed

that increasing net social well-being and slice provider (SP)

gains were coherent goals in case of resource scarcity; other-

wise, a tradeoff existed. Consequently, they proposed a

decreased complexity and distributed a rule to achieve near-

optimal net social well-being with SP/SC increase assurance,

which was validated through quantitative simulations.

In the domain of 5G user-defined heterogeneous networks

(UD-HetNets), Amine et al. [32] addressed the user equip-

ment (UE)-association problem by proposing a new NS com-

position utilizing the matching game [32]. They introduced

the UE-slice association algorithm (U-S. AA) to compute

stable matching between the UEs and different network

slices that also matched. Harnessing the effectiveness of the

Markov decision process (MDP) as a potent calculation

device for improving issues [33], particularly those amenable

to resolution through dynamic programming [34], is indis-

pensable for crafting a creative 5G-IoT model tailored to

address resource allocation challenges.

Tang et al. [34] contributed significantly to this discourse

by proposing a slice-based practical process-order model

employing non-orthogonal multiple access (NOMA) technol-

ogy. They aimed to attain the maximum data rates for users

in authorized studies on power allocation (limited MDPs).

They suggested an approach for distribution based on flexi-

bility, which used the newest procedures of code writing to

address these problems. The simulation results exhibited effi-

ciency, which increased the user’s data transmission rates.

Xi et al. [35] considered resource allocation for partitioned

5G networks and addressed the present-day issues of user

needs within network slices. A virtual network provider can

react appropriately to different consumption demands at a

certain moment and time using a virtual network provider.

Deep reinforcement learning is their “resource slicing”

approach, which facilitates both high short and high long run

gains, resulting in an increase in the overall performance of

the network. Another aspect is the use of network services.

Network service is an essential optimization tool in the mid-

dle of developing new interconnectedness and increasing

demand for assets, primarily in the field of smart attached

things. Thus, it is distinctly unique in the literature on how

to apportion scarce radio link resources among numerous

slices dedicated to different services such as voice and data.

Many independent network segments at a time constitute

large areas for powering several signal types, whereas

devices choose relevant network segments depending on the

current strengths and needs of these facilities.

III. 5G NR AND NS ARCHITECTURE

A. NS Architecture Overview

NS splits a network into virtual pieces. It employs a soft-

ware to control parts of both the RAN and core network [9].

Consequently, NS can create many “slices,” each with its

unique features. This is important because it helps manage

different IoT application requirements [10]. NS is flexible

and can change the manner in which resources are used to

satisfy the specific requirements of various applications.

Thus, it can adapt well and efficiently use what it has for

many different applications that require connections in their

own ways. The architecture also integrates the principles of

softwarization and virtualization, contributing to a decrease

in expenditure on any processes and operations. [11]

B. 5G-IoT NS Architecture

The architecture described in Fig. 1 encompasses the phys-

ical infrastructure, illustrating the foundational elements of

the system, such as the main device and antennas. The vir-

tual picocell is depicted visually to showcase its virtualized

nature and pivotal role in facilitating communication within

a specific coverage area. Various NSs are visually repre-

sented, each delineating distinct characteristics and purposes,

such as the enhanced MBB (eMBB) slice emphasizing high

data rates and enhanced mobile broadband capabilities of the

mMTC [12] slice, which highlights massive machine-type

communications for supporting a multitude of IoT devices,

and the ultra-reliable low-latency communications (URLLC)

slice, which shows ultra-reliable reduced latent period com-

munications tailored to applications with rigorous latent

period requirements. Interactions are illustrated through

arrows or lines connecting the physical infrastructure, virtual
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picocell, and different slices, exemplifying, for instance, the

connection between the eMBB [13] slice and the virtual

picocell, thereby elucidating its handling of high-speed data

transmission. The isolation aspect is visually emphasized

using cues such as dashed lines or distinct colors, symboliz-

ing the independence and reduced interference achieved

through the innovative architecture of NS [14]. The overall

diagram explains the foundational role of the physical infra-

structure, the distinct virtualized nature of the pico-Cell, the

unique characteristics of each slice, the communication path-

ways, and the visual representation of isolation to enhance

clarity and understanding [15].

C. Network slicing characteristics and benefits

NS provides a range of characteristics and benefits that

render it particularly suitable for the diverse and dynamic

nature of 5G-enabled IoT environments. It provides many

benefits such as scalability. NS can scale resources quickly

to adapt to the growing number of connected devices. Other

benefits include flexibility, which is the ability to create cus-

tom slices tuned for specific applications or services means

there is nothing that can't be done, and isolation, which is

the logical isolation of networks eliminates interference,

thereby improving the overall reliability and performance.

Optimizing equipment: NS as a platform also becomes

part of the 5G NR framework and resource utilization [12].

This is innovative architecture. The continuous search for

increased efficiency allows network resources to be dynami-

cally redeployed in response to the varied and exacting

demands placed on them by IoT applications [11].

Efficiency gains are achieved because NS creates logically

separate networks or segments that are carved out to perform

specific tasks or applications [13]. Such isolation implies

that every slice precisely obtains the required bandwidth and

latency, ultimately in accordance with its QoS criteria [12].

For example, when eMBB slices that focus on high data

rates and enhanced broadband capabilities are run concur-

rently with an mMTC slice designed to serve many IoT

objects. Using the intrinsic flexibility of network slicing,

resources are adjusted in real time according to each slice's

needs at any time to avoid overallocation or underutilization

[14].

Moreover, the isolation provided by NS reduces interference

and improves resource utilization. NS can optimize resource

allocation, and [15] emphasizes the importance of this tech-

nology for addressing various requirements characterizing dif-

ferent IoT applications on resources, such as spectra.

The virtualization of network services is crucial for enhanc-

ing resource efficiency. By employing software-defined prin-

ciples, network functions can be dynamically instantiated or

scaled in response to the changing resource demands of dif-

ferent slices [16].

IV. NETWORK PROPOSED MODEL

To determine a solution to the challenges posed by massive

5G (NR)-IoT infrastructures, a few modeling approaches can

be explored. ML, with its adaptive learning capabilities, has

emerged as a promising avenue, particularly through the uti-

lization of reinforcement learning algorithms, as shown in

Fig. 2.

A. RL algorithms

RL refers to a branch of ML that employs multistep deci-

sion making and involves training agents to make sequential

decisions while maximizing cumulative rewards. Bulley:

With the Internet becoming ubiquitous in our daily lives, it

should not be any different from virtual reality, where we

would have more active roles than just being spectators.

Under dynamic and continuously changing conditions, 5G

Fig. 1. 5G network architecture with network slicing Illustrates physical

infrastructure, virtual pico-cell, and three network slices of enhanced mobile
broadband (eMBB), massive machine-type communications (mMTC), and
ultra-reliable low-latency communications (URLLC) with their interconnections

and isolation.

Fig. 2. Reinforcement learning interaction cycle between agent and

environment. The model learns from the environment and then takes action on
new data.
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NR-IoT networks are not static. In accordance with this

environment, the digital twin approach supports rebuilding

devices as needed to adapt to any changes in the demands of

use or environmental conditions.

B. Problem Formulation

Thus, it is possible to translate the association problem into

a RL decision stage; however, here, the network devices act

as agents that learn and interact in an environment defined by

their environment. The agents make decisions in the form of

devices interacting with one another via a network slice

choice mechanism designed to maximize an accumulated

award function that reflects how ideally the system perfor-

mance ought to be improved while restrictions on the QoS are

maintained. For each time step, they proceed through most

steps for every training iteration N, and agent A can make K

choices.

C. State Representation

A complete state representation is of great importance in

RL. The window of observation owing to interference in the

5G NR-IoT may be considered as the state. This can include

different quantities, such as network loading, device features,

and the historical associations between them. If the system is

represented in this manner, it naturally becomes more com-

plex, and its complexity becomes a part of what the RL algo-

rithm learns.

D. Action Space

The action space is the agent’s choice set. This is true for

the association problem, which refers to choosing which net-

work slice is suitable for a piece of equipment. The action

space must be tailored to differences in the characteristics and

needs of IoT devices.

E. Reward Design

To be more precise, the RL algorithm uses the reward func-

tion as a navigational tool to arrive at the promised conclu-

sions. The reward function must reflect the quality of the

entire system with indicators such as the data rate, latency,

and energy efficiency. These factors must be balanced; other-

wise, the learning process will lead only to associations that

improve the network.

F. Exploration and Exploitation Trade-off

Exploration (setting up new associations) and the ability to

exploit existing associations are delicately balanced in RL. It

is important to establish an appropriate balance; otherwise,

the network may converge to a suboptimal solution. In addi-

tion, changes in network conditions require continuous

adjustments and reinventions.

As shown in Fig. 3, the use of RL models for a large asso-

ciation induces dynamic and adaptive dimensions to the

problem in the 5G NR-IoT infrastructure with four different

network topologies. Thus, by enabling devices in the system

to gradually prototype and learn over time, their associations

can be optimized to improve efficiency, resource utilization,

and network performance. In the following sections, we dis-

cuss the implementation details, considerations, and criteria

for assessment as RL is applied to solve user-association

problems.

V. EVALUATION SETUP

A. Data collection and preprocessing

The training and testing of ML models in this study incor-

porated data from a few sources designed to display a com-

plete 5G-IoT environment. The main data formats were user

history and items of network performance.

1) User Interactions

All types of IoT devices were replicated in the experiment

to collect data to record user interactions within a 5G-IoT

network, faithfully reflecting real usage patterns. This also

refers to data on user-device links, communication speed

(data transmission rate), and device-specific encounters.

2) Network Performance

This potential solution was assessed using network perfor-

mance metrics. Data from network devices and base stations

included latency, throughput rates, and interference ratios.

This enabled a comprehensive understanding of the dynamic

aspects of a network. Our programmers were required to

carefully prepare the data before training the ML models.

Fig. 3. Taxonomy of reinforcement learning algorithms and approaches
following a hierarchical structure, which presents various categories and types
of reinforcement learning algorithms.
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We had to clean and normalize the data and extract the key

points.

• Cleaning: The data we must continue are insignificant.

Sometimes, the tuff slips, which is a mistake or an unusual

bit that affects how the model learns. This was how we

eliminated the bad data points by cleaning them up.

• Normalization: A normalization process was adopted to

ensure that all features in the dataset were on a similar

scale. This prevented any one feature from overwhelm-

ing the model training owing to its large size.

• Feature Extraction: Feature extraction was employed to

identify and select the most pertinent data from the set.

The goal was to simplify the model and maintain the

essential traits for effective training.

Fig. 4 shows how the data moved through the steps before

they were ready. At each part, the raw data improved, thus

the ML model could be trained.

B. Model selection and training procedure

The training of ML models for the 5G-IoT involved a

detailed method. This sharpened the scope of the studies. Let

us consider the following steps.

1) Model Selection

Selecting the right ML model is key. For the 5G-IoT sce-

nario, RL was the primary focus.

2) Dataset Splitting

The prepared data were split into training and testing

parts. It is often a mix of 80-20 or 70-30, balancing practice

with a good test of a model’s skills.

3) Hyperparameters

This step involved adjusting critical settings, such as the

learning rate, and then teaching the model through a cycle of

trial and error. We watched it learn using graphs and plots to

ensure that it was correct.

C. Evaluation metrics

Several different assessment criteria were used to elevate

the performance of the ML models to determine their current

success. The following metrics were used.

• Precision: Proportion of positive observations correctly

predicted by the model to the total number of positive

observations predicted. This demonstrates the accuracy

of the model when it makes positive predictions.

• Recall: Proportion of the total number of correctly pre-

dicted positive values to the total number of actual posi-

tive values. This demonstrates the degree to which the

model can correctly classify all the positive samples.

• F1-score: This is the geometric mean of the precision

and recall scores, and presents an overall score that con-

siders both values. This is particularly useful when the

class distribution is unbalanced.

• Support: The counts of each class in the real data.

• Accuracy: Number of observations correctly predicted to

the total number of observations. This reflects the accu-

racy of the model in general, as it shows the combined

error of all parameters. 

• Macro avg: Average of the metrics for all classes regard-

less of their size. It does not distinguish between classes,

even when certain are supportive. 

• Weighted avg: Average of the metric for each class,

where the average is considered over the number of true

instances of each class. This explains class imbalance.

Fig. 4. Steps in preprocessing data, including data extraction (BET), spatial
normalization (FLIRT&FNIRT), smoothing (Gaussian kernel), slice selection,

and histogram stretching. Each step is paired with its corresponding technique
or parameter.

Fig. 5. Chart illustrating the training curve. It shows how the model improves

over time considering different scores and using different parameters.
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VI. RESULTS AND DISCUSSION

A. Test Runs and Evaluation

This section summarizes the results obtained using the

new model. We draw certain important conclusions and find

interesting patterns that are made clearer using diagrams.

These visuals helped us obtain a bigger picture and the pri-

mary benefits of our findings.

The simulated results in Fig. 6 and 7 demonstrate the fea-

sibility of a 5G network using NS and an RL algorithm,

along with the setup subchannels installed to mimic the pres-

ence of a residential area with randomly positioned small

cells within a macrocell. Although the macrocell covered

500 m, each small cell was responsible for an area of only

10 m. Certain important system parameters were a carrier

frequency of 2 GHz, bandwidth of 10 MHz with a subchan-

nelization of 50, minimum distance between two small cells

of 20 m, and maximum transmitter power for small cell and

macrocell user of 23 dBm. Therefore, an RL algorithm was

used to maximize the chances and resources available. In the

macrocell, 50 users requesting IoT services were randomly

located and multiple requests for URLLC or eMBB opera-

tions were placed in each small cell. The channel model con-

sidered path loss both indoors and outdoors, as well as

frequency-selective fading. This design facilitated a realistic

assessment of network performance during the training of

the RL algorithm to manage the available network resources

and slice configurations.

Table 1 presents our evaluation, highlighting the key met-

rics introduced in the previous sections, such as the accu-

racy, recall, and precision curves. These results aided in

better understanding the model's performance in a 5G-IoT

setting. Using the RL in our simulation was the key to boost-

ing the performance of our 5G network. This worked even

better when combined with our architecture to divide the

network and our plan to spread subchannels and power.

We have also plotted our table results focusing on the

three test runs and the Macro Avg parameter to see the ratio

of our false positives to our true positives, which accounted

for 1.00. Other parameters such as precision and F1-score

were tested and achieved an accuracy of 1.00, as shown in

Fig. 8.

Table 1. Test Runs and Results Analysis

Test Runs Precision Recall F1-score Support

Test 1 1.00 1.00 1.00 3360

Test 2 1.00 1.00 1.00 1479

Test 3 1.00 1.00 1.00 1778

Accuracy 1.00 6317

Macro avg 1.00 1.00 1.00 6317

Weighted avg 1.00 1.00 1.00 6317

Fig. 6. Impact of Inter-cell interference and user count on eMBB slice

capacity vs. number of small cells

Fig. 7. Impact of inter-cell interference and user count on URLLC slice
capacity vs. number of small cells

Fig. 8. Testing several parameters and checking the false to true positive
ratio, results of our parameters account to 1.00.
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B. Discussion

The findings presented in Table 1 provide useful informa-

tion regarding the effectiveness and possibilities of the

developed 5G network model based on the network slicing

and reinforcement learning algorithms. First, when the pro-

posed approach of combining network slicing with reinforce-

ment learning was implemented, the resource allocation and

overall network performance improved significantly. This

was expected because of the ability of the RL algorithm to

control network resources and slice configurations dynami-

cally, rendering it ideal for the heterogeneous network envi-

ronment depicted in the simulation, which includes both

macrocells and small cells. The performance metrics of the

eMBB and URLLC slices indicated that the system could

support different services within the same physical infra-

structure. This is important for handling the diverse traffic

expected to be carried by 5G networks, including media

streaming and low-latency IoT.

The feasibility of the solution was observed from the fact

that the system was capable of handling 50 IoT users in the

macrocell, along with multiple URLLC and eMBB requests in

each small cell. This demonstrated that the proposed approach

could handle dense urban environments, as shown in this exam-

ple. Surprisingly, the inclusion of both indoor and outdoor path

losses and frequency selectivity in the fading of the channel

provided a more realistic scenario for our simulations. This

approach to model the propagation of a signal was considerably

more elaborate than the previous approach, thus rendering the

results more credible. The evaluation of resource management

based on reinforcement learning was quite promising in terms

of solving the problem of dynamic assignment of resources in

5G networks. It also focused on the algorithm’s capacity to

learn about network conditions and user requirements.

However, it is necessary to state that although the pre-

sented simulations provided promising outcomes, the real-

world implementation of the described approach may encoun-

ter issues that were not considered in the model. These may

include interference from other networks, system hardware,

or environmental conditions. In summary, the proposed

model exhibited a high level of effectiveness in improving

the characteristics of 5G networks and increasing the effi-

ciency and flexibility of their work using network slicing

and reinforcement learning. These findings indicate that this

strategy is a feasible remedy for fulfilling the diverse and

challenging specifications of next-generation wireless com-

munication. Future work could involve fine-tuning the RL

algorithm, testing the algorithm under different network con-

ditions, and studying the ability of the algorithm to scale up

to very large and complex networks.

VII. CONCLUSION AND FUTURE WORK

This study explored the use of the combination of combine

energy learning techniques with NS to increase the perfor-

mance of 5G networks in suburban environments using the

proposed subchannel and power distribution methods with

energy learning flexibility, advantages, and strengths. The

algorithm demonstrated its effectiveness in optimizing sub-

channel allocation and power regulation by dynamically

responding to changing conditions, which led to an overall

increase in network performance and adaptability. There are

several promising avenues for future research in this area.

Further investigations should delve into the refinement of

reinforcement models, exploring superior algorithms and

education methodologies to enhance their adaptability and

mastering efficiency. In addition, the scalability of the pro-

posed technique can be examined in extra-significant net-

work situations and deployment eventualities, considering

the complexities introduced by using a larger range of small

cells and varying user densities. The exploration of the mix-

ing of emerging technologies with facet computing and arti-

ficial intelligence could also be a fruitful future endeavor,

opening new opportunities for optimizing 5G network per-

formance and satisfying the evolving demands of diverse

applications. Overall, the findings of this study are expected

to inspire persistent research and improvement within the

dynamic and ever-evolving panorama of 5G community

optimization.
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