DOI QR코드

DOI QR Code

Comparative analysis of Bombyx batryticatus and Bombyx mori on α-glucosidase inhibition and their bioactive compositions

  • Hwa Lee (Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jong-Hoon Kim (Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 투고 : 2024.08.27
  • 심사 : 2024.09.23
  • 발행 : 2024.09.30

초록

This study aimed to evaluate and compare the inhibitory effects of extracts from Bombyx batryticatus (BBE) and Bombyx mori (BME) on α-glucosidase, DPP-4, and LDL oxidation activities, focusing on their potential applications in managing postprandial hyperglycemia and metabolic syndrome. The results demonstrated that both BBE and BME effectively inhibited α-glucosidase and LDL oxidation, with BBE exhibiting higher inhibitory activity than BME. HPLC analysis identified linolenic acid, linoleic acid, linolenic acid ethyl ester, pheophorbide a, and pyropheophorbide a as key compounds contributing to these effects. Notably, the identified unsaturated fatty acids and pheophorbides showed strong α-glucosidase inhibitory activity, surpassing that of acarbose, a standard diabetic drug. These results suggest that, in addition to the previously reported 1-DNJ and fibroin proteins, unsaturated fatty acids and chlorophyll-derived pheophorbides may play significant roles in glycemic control. Compounds, particularly those from BBE, present promising opportunities for the development of natural therapeutic agents for diabetes management. The study concludes that BBE and BME have strong potential as functional ingredients in future diabetes treatment strategies, possibly offering enhanced efficacy over conventional inhibitors.

키워드

과제정보

This work was carried out with the KRIBB Research Initiative Program (KGM5492423) of the Ministry of Science and ICT, Republic of Korea.

참고문헌

  1. Chen HJ (2014) Changes of 1-deoxynojirimycin with hypoglycemic activity in Silkworm (Bombyx mori L.) during different developmental stages. Med Chem 4, 630-634. https://doi.org/10.4172/2161-0444.1000205.
  2. Chen S, Lin B, Gu J, Yong T, Gao X, Xie Y, et al. (2022) Binding interaction of betulinic acid to alpha-glucosidase and its alleviation on postprandial hyperglycemia. Molecules 27, 2517. https://doi.org/10.3390/molecules27082517.
  3. Du M, Gong M, Wu G, Jin J, Wang X, Jin Q (2024) Conjugated Linolenic Acid (CLnA) vs Conjugated Linoleic Acid (CLA): A comprehensive review of potential advantages in molecular characteristics, health benefits, and production techniques. J Agric Food Chem 72, 5503-5525. https://doi.org/10.1021/acs.jafc.3c08771.
  4. He LY, Hu MB, Li RL, Zhao R, Fan LH, Wang L, et al. (2020) The effect of protein-rich extract from Bombyx batryticatus against glutamate-damaged PC12 cells via regulating gamma-aminobutyric acid signaling pathway. Molecules 25, 553. https://doi.org/10.3390/molecules25030553.
  5. Hu M, Liu Y, He L, Yuan X, Peng W, Wu C (2019) Antiepileptic effects of protein-rich extract from Bombyx batryticatus on mice and its protective effects against H2O2-induced oxidative damage in PC12 cells via regulating PI3K/Akt signaling pathways. Oxid Med Cell Longev 2019, 7897584. https://doi.org/10.1155/2019/7897584.
  6. Hu M, Yu Z, Wang J, Fan W, Liu Y, Li J, et al. (2017) Traditional uses, origins, chemistry and pharmacology of Bombyx batryticatus: a review. Molecules 22, 1779. https://doi.org/10.3390/molecules22101779.
  7. International Diabetes Federation (2021). IDF Diabetes Atlas, 10th edn. Brussels, Belgium.
  8. Jeong BM, Hyun MK, Sin WY, Kim MR, Shin HC, Yoon CH, et al. (2004) Effects of bombycis corpus on streptozotocin-induced diabetic rats. Korean J Intern Medicine 25, 288-297.
  9. Ji HS, Li H, Mo EJ, Kim UH, Kim YH, Park HY, et al. (2019) Lowdensity lipoprotein-antioxidant flavonoids and a phenolic ester from Plectranthus hadiensis var. tomentosus. Appl Biol Chem 62, 58. https://doi.org/10.1186/s13765-019-0464-y.
  10. Ju WT, Kim HB, Kim KY, Sung GB, Kim YS (2015) Screening of 1-deoxynojirimycin (DNJ) producing bacteria using mulberry leaf. Int J Indust Entomol Biomater 31, 48-55. https://doi.org/10.7852/IJIE.2015.31.2.48.
  11. Khwaja NUD, Arunagirinathan G (2021) Efficacy and cardiovascular safety of alpha glucosidase inhibitors. Curr Drug Saf 16, 122-128. https://doi.org/10.2174/1574886315666201217100445.
  12. Kim KR, Rhee SD, Kim HY, Jung WH, Yang SD, Kim SS, et al. (2005) KR-62436, 6-2-[2-(5-cyano-4,5-dihydropyrazol-1-yl)-2-oxoethylamino]ethylaminonicotinonitrile, is a novel dipeptidyl peptidase-IV (DPP-IV) inhibitor with anti-hyperglycemic activity. Eur J Pharmacol 518, 63-70. https://doi.org/10.1016/j.ejphar.2005.05.030.
  13. Kim KY, Nam KA, Kurihara H, Kim SM (2008) Potent alphaglucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69, 2820-2825. https://doi.org/10.1016/j.phytochem.2008.09.007.
  14. Kim MJ, Kim HJ, Han JS (2019) Pheophorbide a from Gelidium amansii improves postprandial hyperglycemia in diabetic mice through alpha-glucosidase inhibition. Phytother Res 33, 702-707. https://doi.org/10.1002/ptr.6260.
  15. Kong Y, Xu C, He ZL, Zhou QM, Wang JB, Li ZY, et al. (2014) A novel peptide inhibitor of platelet aggregation from stiff silkworm, Bombyx batryticatus. Peptides 53, 70-78. https://doi.org/10.1016/j.peptides.2013.12.004.
  16. Li H, Ji HS, Kang JH, Shin DH, Park HY, Choi MS, et al. (2015) Soy leaf extract containing Kaempferol glycosides and pheophorbides improves glucose homeostasis by enhancing pancreatic beta-cell function and suppressing hepatic lipid accumulation in db/db mice. J Agric Food Chem 63, 7198-7210. https://doi.org/10.1021/acs.jafc.5b01639.
  17. Ma G, Chai X, Hou G, Zhao F, Meng Q (2022) Phytochemistry, bioactivities and future prospects of mulberry leaves: A review. Food Chem 372, 131335. https://doi.org/10.1016/j.foodchem.2021.131335.
  18. Masenga SK, Kabwe LS, Chakulya M, Kirabo A. (2023) Mechanisms of Oxidative Stress in Metabolic Syndrome. Int J Mol Sci 24(9), 7898. https://doi.org/10.3390/ijms24097898.
  19. Offman E, Davidson M, Abu-Rashid M, Chai P, Nilsson C (2017) Systemic bioavailability and dose proportionality of omega-3 administered in free fatty acid form compared with ethyl ester form: results of a phase 1 study in healthy volunteers. Eur J Drug Metab Pharmacokinet 42, 815-825. https://doi.org/10.1007/s13318-016-0398-2.
  20. Pan X, Xu S, Li J, Tong N (2020) The effects of DPP-4 inhibitors, GLP-1RAs, and SGLT-2/1 inhibitors on heart failure outcomes in diabetic patients with and without heart failure history: insights from CVOTs and drug mechanism. Front Endocrinol (Lausanne) 11, 599355. https://doi.org/10.3389/fendo.2020.599355.
  21. Park JH, Lee DY, Kim SY, Shrestha S, Bang MH, Kim GS, et al. (2014) New hydroxy fatty acids from Bombyx mori droppings. Chem Nat Compd 50, 801-803. https://doi.org/10.1007/S10600-014-1087-5.
  22. Rattana S, Katisart T, Butiman C, Sungthong B (2019) Total flavonoids, total phenolics, 1-deoxynojirimycin content and alpha-glucosidase inhibitory activity of Thai silkworm races (Bombyx mori Linn.). Pak J Pharm Sci 32, 2539-2544. https://www.ncbi.nlm.nih.gov/pubmed/31969283.
  23. Scheen AJ, Esser N, Paquot N. (2015) Antidiabetic agents: Potential anti-inflammatory activity beyond glucose control. Diabetes Metab 41(3), 183-194. https://doi.org/10.1016/j.diabet.2015.02.003.
  24. Schuchardt JP, Hahn A (2013) Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 89, 1-8. https://doi.org/10.1016/j.plefa.2013.03.010.
  25. Su CH, Hsu CH, Ng LT (2013) Inhibitory potential of fatty acids on key enzymes related to type 2 diabetes. Biofactors 39, 415-421. https://doi.org/10.1002/biof.1082.
  26. Tian J, Li C, Dong Z, Yang Y, Xing J, Yu P, et al. (2023) Inactivation of the antidiabetic drug acarbose by human intestinal microbialmediated degradation. Nat Metab 5, 896-909. https://doi.org/10.1038/s42255-023-00796-w.
  27. Wang H, Shen Y, Zhao L, Ye Y (2021) 1-deoxynojirimycin and its derivatives: a mini review of the literature. Curr Med Chem 28, 628-643. https://doi.org/10.2174/0929867327666200114112728.
  28. Wang HY, Wang YJ, Zhou LX, Zhu L, Zhang YQ (2012) Isolation and bioactivities of a non-sericin component from cocoon shell silk sericin of the silkworm Bombyx mori. Food Funct 3, 150-158. https://doi.org/10.1039/c1fo10148j.
  29. Xing D, Shen G, Li Q, Xiao Y, Yang Q, Xia Q (2019) Quality formation mechanism of stiff silkworm, Bombyx batryticatus using UPLCQ-TOF-MS-based metabolomics. Molecules 24, 3780. https://doi.org/10.3390/molecules24203780.
  30. Zhang M, Feng R, Yang M, Qian C, Wang Z, Liu W, et al. (2019) Effects of metformin, acarbose, and sitagliptin monotherapy on gut microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Res Care 7, e000717. https://doi.org/10.1136/bmjdrc-2019-000717.
  31. Zhao Q, Jia TZ, Cao QC, Tian F, Ying WT (2018) A crude 1-DNJ extract from home made Bombyx batryticatus inhibits diabetic cardiomyopathy-associated fibrosis in db/db mice and reduces protein N-glycosylation levels. Int J Mol Sci 19, 1699. https://doi.org/10.3390/ijms19061699.
  32. Zhou Y, Zhou S, Duan H, Wang J, Yan W (2022) Silkworm pupae: a functional food with health benefits for humans. Foods 11, 1594. https://doi.org/10.3390/foods11111594.