DOI QR코드

DOI QR Code

Human Endometrial Regenerative Cells for Neurological Disorders: Hype or Hope?

  • Javad Momeni (Neuroscience Research Center, Mashhad University of Medical Sciences) ;
  • Elnaz Naserzadeh (Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences) ;
  • Ali Sepehrinezhad (Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences) ;
  • Rezan Ashayeri Ahmadabad (Shefa Neuroscience Research Center, Khatam Alanbia Hospital) ;
  • Sajad Sahab Negah (Neuroscience Research Center, Mashhad University of Medical Sciences)
  • Received : 2023.06.15
  • Accepted : 2023.10.06
  • Published : 2024.08.30

Abstract

Despite enormous efforts, no effective medication has been found to significantly halt or even slow the progression of neurological diseases, such as acquired (e.g., traumatic brain injury, spinal cord injury, etc.) and chronic (e.g., Parkinson's disease, Alzheimer's disease, etc.) central nervous system disorders. So, researchers are looking for alternative therapeutic modalities to manage the disease's symptoms and stop it from worsening. Concerning disease-modifying capabilities, stem cell therapy has emerged as an expanding domain. Among different types of stem cells, human endometrial regenerative cells have excellent regenerative properties, making them suitable for regenerative medicine. They have the potential for self-renewal and differentiation into three types of stem cells: epithelial stem cells, endothelial side population stem cells, and mesenchymal stem cells (MSCs). ERCs can be isolated from endometrial biopsy and menstrual blood samples. However, there is no comprehensive evidence on the effects of ERCs on neurological disorders. Hence, we initially explore the traits of these specific stem cells in this analysis, followed by an emphasis on their therapeutic potential in treating neurological disorders.

Keywords

Acknowledgement

We would like to thank the Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, for their assistance in this manuscript.

References

  1. Feigin VL, Vos T, Nichols E, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol 2020;19:255-265 
  2. De Gioia R, Biella F, Citterio G, et al. Neural stem cell transplantation for neurodegenerative diseases. Int J Mol Sci 2020;21:3103 
  3. Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol 2020;27:27-42 
  4. Chiken S, Nambu A. Mechanism of deep brain stimulation: inhibition, excitation, or disruption? Neuroscientist 2016;22:313-322 
  5. Fox SH, Katzenschlager R, Lim SY, et al. The Movement Disorder Society evidence-based medicine review update: treatments for the motor symptoms of Parkinson's disease. Mov Disord 2011;26 Suppl 3:S2-S41 
  6. Ahmadian-Moghadam H, Sadat-Shirazi MS, Zarrindast MR. Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020;42:1073-1101 
  7. Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal stem cells for neurological disorders. Adv Sci (Weinh) 2021;8:2002944 
  8. Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019;10:68 
  9. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration 2013;85:3-10 
  10. Sobhani A, Khanlarkhani N, Baazm M, et al. Multipotent stem cell and current application. Acta Med Iran 2017;55:6-23 
  11. Gurusamy N, Alsayari A, Rajasingh S, Rajasingh J. Adult stem cells for regenerative therapy. Prog Mol Biol Transl Sci 2018;160:1-22 
  12. Barkho BZ, Zhao X. Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr Stem Cell Res Ther 2011;6:327-338 
  13. Nam H, Lee KH, Nam DH, Joo KM. Adult human neural stem cell therapeutics: current developmental status and prospect. World J Stem Cells 2015;7:126-136 
  14. Bozorgmehr M, Gurung S, Darzi S, et al. Endometrial and menstrual blood mesenchymal stem/stromal cells: biological properties and clinical application. Front Cell Dev Biol 2020;8:497 
  15. Zuo W, Xie B, Li C, et al. The clinical applications of endometrial mesenchymal stem cells. Biopreserv Biobank 2018;16:158-164 
  16. Meng X, Ichim TE, Zhong J, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med 2007;5:57 
  17. Jin W, Zhao Y, Hu Y, et al. Stromal cell-derived factor-1 enhances the therapeutic effects of human endometrial regenerative cells in a mouse sepsis model. Stem Cells Int 2020;2020:4820543 
  18. Kong Y, Shao Y, Ren C, Yang G. Endometrial stem/progenitor cells and their roles in immunity, clinical application, and endometriosis. Stem Cell Res Ther 2021;12:474 
  19. Zhong Z, Patel AN, Ichim TE, et al. Feasibility investigation of allogeneic endometrial regenerative cells. J Transl Med 2009;7:15 
  20. Ichim TE, Alexandrescu DT, Solano F, et al. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 2010;260:75-82 
  21. Wang Z, Wang D, Liu Y, et al. Mesenchymal stem cell in mice uterine and its therapeutic effect on osteoporosis. Rejuvenation Res 2021;24:139-150 
  22. Liu Y, Niu R, Li W, et al. Therapeutic potential of menstrual blood-derived endometrial stem cells in cardiac diseases. Cell Mol Life Sci 2019;76:1681-1695 
  23. Chen L, Qu J, Xiang C. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine. Stem Cell Res Ther 2019;10:1 
  24. Peron JP, Jazedje T, Brandao WN, et al. Human endometrial-derived mesenchymal stem cells suppress inflammation in the central nervous system of EAE mice. Stem Cell Rev Rep 2012;8:940-952 
  25. Hong IS. Endometrial stem/progenitor cells: properties, origins, and functions. Genes Dis 2022;10:931-947 
  26. Maruyama T. Endometrial stem/progenitor cells. J Obstet Gynaecol Res 2014;40:2015-2022 
  27. Li H, Yahaya BH, Ng WH, Yusoff NM, Lin J. Conditioned medium of human menstrual blood-derived endometrial stem cells protects against MPP+-induced cytotoxicity in vitro. Front Mol Neurosci 2019;12:80 
  28. Masuda H, Schwab KE, Filby CE, et al. Endometrial stem/progenitor cells in menstrual blood and peritoneal fluid of women with and without endometriosis. Reprod Biomed Online 2021;43:3-13 
  29. Mobarakeh ZT, Ai J, Yazdani F, et al. Human endometrial stem cells as a new source for programming to neural cells. Cell Biol Int Rep (2010) 2012;19:e00015 
  30. Liu Y, Niu R, Yang F, et al. Biological characteristics of human menstrual blood-derived endometrial stem cells. J Cell Mol Med 2018;22:1627-1639 
  31. Cheng Y, Li L, Wang D, et al. Characteristics of human endometrium-derived mesenchymal stem cells and their tropism to endometriosis. Stem Cells Int 2017;2017:4794827 
  32. Fayazi M, Salehnia M, Ziaei S. Differentiation of human CD146-positive endometrial stem cells to adipogenic-, osteogenic-, neural progenitor-, and glial-like cells. In Vitro Cell Dev Biol Anim 2015;51:408-414 
  33. Kojour MA, Ebrahimi-Barough S, Kouchesfehani HM, Jalali H, Ebrahim MH. Oleic acid promotes the expression of neural markers in differentiated human endometrial stem cells. J Chem Neuroanat 2017;79:51-57 
  34. Noureddini M, Verdi J, Mortazavi-Tabatabaei SA, et al. Human endometrial stem cell neurogenesis in response to NGF and bFGF. Cell Biol Int 2012;36:961-966 
  35. Wolff EF, Gao XB, Yao KV, et al. Endometrial stem cell transplantation restores dopamine production in a Parkinson's disease model. J Cell Mol Med 2011;15:747-755 
  36. Zhao Y, Chen X, Wu Y, Wang Y, Li Y, Xiang C. Transplantation of human menstrual blood-derived mesenchymal stem cells alleviates Alzheimer's disease-like pathology in APP/PS1 transgenic mice. Front Mol Neurosci 2018;11:140 
  37. Borlongan CV, Kaneko Y, Maki M, et al. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev 2010;19:439-452 
  38. Wu Q, Wang Q, Li Z, et al. Human menstrual blood-derived stem cells promote functional recovery in a rat spinal cord hemisection model. Cell Death Dis 2018;9:882 
  39. Shi Y, Liu Y, Zhang B, Li X, Lin J, Yang C. Human menstrual blood-derived endometrial stem cells promote functional recovery by improving the inflammatory microenvironment in a mouse spinal cord injury model. Cell Transplant 2023;32:9636897231154579 
  40. Wolff EF, Mutlu L, Massasa EE, Elsworth JD, Eugene Redmond D Jr, Taylor HS. Endometrial stem cell transplantation in MPTP- exposed primates: an alternative cell source for treatment of Parkinson's disease. J Cell Mol Med 2015;19:249-256 
  41. Yang X, Devianti M, Yang YH, et al. Endometrial mesenchymal stem/stromal cell modulation of T cell proliferation. Reproduction 2019;157:43-52 
  42. Manganeli Polonio C, Longo de Freitas C, Garcia de Oliveira M, et al. Murine endometrial-derived mesenchymal stem cells suppress experimental autoimmune encephalomyelitis depending on indoleamine-2,3-dioxygenase expression. Clin Sci (Lond) 2021;135:1065-1082 
  43. Leon-Moreno LC, Castaneda-Arellano R, Aguilar-Garcia IG, et al. Kinematic changes in a mouse model of penetrating hippocampal injury and their recovery after intranasal administration of endometrial mesenchymal stem cell-derived extracellular vesicles. Front Cell Neurosci 2020;14:579162 
  44. Hasanzadeh E, Ebrahimi-Barough S, Mahmoodi N, et al. Defining the role of 17β-estradiol in human endometrial stem cells differentiation into neuron-like cells. Cell Biol Int 2021;45:140-153 
  45. Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med 2017;377:162-172 
  46. Shirian S, Ebrahimi-Barough S, Saberi H, et al. Comparison of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly (ε-caprolactone) scaffold. Mol Neurobiol 2016;53:5278-5287 
  47. Ebrahimi-Barough S, Hoveizi E, Yazdankhah M, et al. Inhibitor of PI3K/Akt signaling pathway small molecule promotes motor neuron differentiation of human endometrial stem cells cultured on electrospun biocomposite polycaprolactone/collagen scaffolds. Mol Neurobiol 2017;54:2547-2554 
  48. Ebrahimi-Barough S, Norouzi Javidan A, Saberi H, et al. Evaluation of motor neuron-like cell differentiation of hEnSCs on biodegradable PLGA nanofiber scaffolds. Mol Neurobiol 2015;52:1704-1713 
  49. Mahmoodi N, Ai J, Ebrahimi-Barough S, et al. Microtubule stabilizer epothilone B as a motor neuron differentiation agent for human endometrial stem cells. Cell Biol Int 2020;44:1168-1183 
  50. Mohamadi F, Ebrahimi-Barough S, Nourani MR, et al. Enhanced sciatic nerve regeneration by human endometrial stem cells in an electrospun poly (ε-caprolactone)/collagen/NBG nerve conduit in rat. Artif Cells Nanomed Biotechnol 2018;46:1731-1743 
  51. Jalali Monfared M, Nasirinezhad F, Ebrahimi-Barough S, et al. Transplantation of miR-219 overexpressed human endometrial stem cells encapsulated in fibrin hydrogel in spinal cord injury. J Cell Physiol 2019;234:18887-18896 
  52. Babaloo H, Ebrahimi-Barough S, Derakhshan MA, et al. PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury. J Cell Physiol 2019;234:11060-11069 
  53. Terraf P, Kouhsari SM, Ai J, Babaloo H. Tissue-engineered regeneration of hemisected spinal cord using human endometrial stem cells, poly ε-caprolactone scaffolds, and crocin as a neuroprotective agent. Mol Neurobiol 2017;54:5657-5667