DOI QR코드

DOI QR Code

JSI TRIGA fuel rod reactivity worth experiments for validation of Serpent-2 and RAPID fuel burnup calculations

  • Anze Pungercic (Reactor Physics Department, "Jozef Stefan" Institute) ;
  • Alireza Haghighat (Virginia Tech Research Center, Nuclear Engineering Program, Mechanical Engineering Dept.) ;
  • Luka Snoj (Reactor Physics Department, "Jozef Stefan" Institute)
  • Received : 2023.12.15
  • Accepted : 2024.03.28
  • Published : 2024.08.25

Abstract

Reactivity worth of fuel rods at the JSI TRIGA research reactor was measured. Differently burned fuel rods were chosen to validate fuel burnup calculations. Two methods of measuring reactivity worth of fuel rods are used, traditional method is compared to newly introduced method using fuel rods swapping. Connection between both methods is described theoretically and the theory is validated experimentally. Fuel rod worth calculated using the newly introduced fuel rod swap method was within 1σ of worth measured using the traditional method. In addition to the recently performed experiments, weekly measurements of reactor core reactivity throughout the operational history are used for validation. The measured data were used to validate the fuel burnup and core criticality calculations. Fuel burnup calculations are performed using three different computer codes: the deterministic TRIGLAV, the Monte Carlo Serpent-2, and the hybrid RAPID. Great agreement was observed for Serpent-2 and RAPID by simulating fuel rod worth and its burnup, indicating that the fuel burnup and criticality calculations are accurate and that reactivity changes due to small burnup differences on the order of 10 pcm can be accurately simulated. In addition it was shown using ex-core detectors and large fission chamber that detector response changes due to fuel swapping are evident for fuel rod burnup differences of 20 MWd/kg. Fuel burnup calculations were further validated on excess reactivity measurements for three mixed TRIGA cores. The calculated burnup reactivity coefficient ΔρBU using Serpent-2 and RAPID was within 1σ of the measurements, showing both codes are capable of calculating burnup for different TRIGA fuel types.

Keywords

Acknowledgement

The authors acknowledge the project (Young researcher project Anze Pungercic, 52060) was financially supported by the Slovenian Research and Innovation Agency. The authors acknowledge the financial support from the Slovenian Research and Innovation Agency (research core funding No. P2-0073, research project No. NC-0015).

References

  1. J. Ferrandis, O. Gatsa, P. Combette, D. Fourmentel, C. Destouches, V. Radulovic, L. Snoj, Acoustic instrumentation of the new generation of MTR: effect of nuclear radiation on modified Bismuth Titanate piezoelectric elements, in: EPJ Web of Conferences, Vol. 225, EDP Sciences, 2020, p. 04012.
  2. G.I. Bell, S. Glasstone, Nuclear Reactor Theory, Technical Report, US Atomic Energy Commission, Washington, DC (United States), 1970.
  3. A. Haghighat, Monte Carlo Methods for Particle Transport, Crc Press, 2020.
  4. A. Persic, T. Zagar, M. Ravnik, S. Slavic, B. Zefran, D. Calic, A. Trkov, G. Zerovnik, A. Jazbec, L. Snoj, TRIGLAV: A program package for TRIGA reactor calculations, Nucl. Eng. Des. 318 (2017) 24-34.
  5. A. Pungercic, D. Calic, L. Snoj, Computational burnup analysis of the TRIGA Mark II research reactor fuel, Prog. Nucl. Energy 130 (2020) 103536.
  6. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: Status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150.
  7. J. Leppanen, A. Isotalo, Burnup Calculation Methodology in the Serpent 2 Monte Carlo Code, Technical Report, American Nuclear Society, Inc., 555 N. Kensington Avenue, La Grange Park .. ., 2012.
  8. N. Roskoff, A. Haghighat, Development of a novel fuel burnup methodology using the rapid particle transport code system, in: 2018 International Conference on Physics of Reactors: Reactor Physics Paving the Way Towards more Efficient Systems, PHYSOR 2018, Sociedad Nuclear Mexicana, AC, 2018, pp. 709-721.
  9. A. Pungercic, V. Mascolino, A. Haghighat, L. Snoj, Verification of a novel fuel burnup algorithm in the RAPID code system based on Serpent-2 simulation of the TRIGA Mark II research reactor, Nucl. Eng. Technol. (2023) http://dx.doi.org/10.1016/j.net.2023.06.040.
  10. A. Haghighat, K. Royston, W. Walters, MRT methodologies for real-time simulation of nonproliferation and safeguards problems, Ann. Nucl. Energy 87 (2016) 61-67.
  11. W. Walters, N.J. Roskoff, A. Haghighat, A fission matrix approach to calculate pin-wise 3D fission density distribution, in: Proc. M&C, 2015.
  12. W.J. Walters, N.J. Roskoff, A. Haghighat, The RAPID fission matrix approach to reactor core criticality calculations, Nucl. Sci. Eng. 192 (1) (2018) 21-39.
  13. T. Goricanec, B. Kos, K. Ambrozic, A. Trkov, L. Snoj, M. Kromar, Determination of neutron flux redistribution factors for a typical pressurized water reactor ex-core measurements using Monte Carlo technique, Front. Energy Res. 11 (2023).
  14. F. Michel-Sendis, I. Gauld, J. Martinez, C. Alejano, M. Bossant, D. Boulanger, O. Cabellos, V. Chrapciak, J. Conde, I. Fast, M. Gren, K. Govers, M. Gysemans, V. Hannstein, F. Havluj, M. Hennebach, G. Hordosy, G. Ilas, R. Kilger, R. Mills, D. Mountford, P. Ortego, G. Radulescu, M. Rahimi, A. Ranta-Aho, K. Rantamaki, B. Ruprecht, N. Soppera, M. Stuke, K. Suyama, S. Tittelbach, C. Tore, S.V. Winckel, A. Vasiliev, T. Watanabe, T. Yamamoto, T. Yamamoto, SFCOMPO-2.0: An OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data, Ann. Nucl. Energy 110 (2017) 779-788.
  15. I.C. Gauld, M.L. Williams, F. Michel-Sendis, J.S. Martinez, Integral nuclear data validation using experimental spent nuclear fuel compositions, Nucl. Eng. Technol. 49 (6) (2017) 1226-1233, Special Issue on International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering 2017 (M&C 2017).
  16. F. Michel-Sendis, M. Bossant, N. Soppera, I. Gauld, A New OECD/NEA Database of Nuclide Compositions of Spent Nuclear Fuel, Technical Report, 2015.
  17. H. Bock, J. Hammer, Gamma spectrometry of TRIGA fuel elements, Atomkernenerg./Kerntech. (Germany, Federal Republic of) 39 (3) (1981).
  18. T.-K. Wang, J.-J. Peir, An iterative approach for TRIGA fuel burn-up determination using nondestructive gamma-ray spectrometry, Appl. Radiat. Isot. 52 (1) (2000) 105-118.
  19. S. Karimzadeh, R. Khan, H. Bock, Gamma spectrometry inspection of TRIGA MARK II fuel using caesium isotopes, Nucl. Eng. Des. 241 (1) (2011) 118-123.
  20. R. Dobrin, T. Craciunescu, M. Pavelescu, Candu and triga fuel burn-up determination using axial and tomographic Gamma-scanning, Romanian Rep. Phys. 63 (4) (2011) 1009-1017.
  21. J.M. Harp, P.A. Demkowicz, P.L. Winston, J.W. Sterbentz, An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques, Nucl. Eng. Des. 278 (2014) 395-405.
  22. K. Abbas, G. Nicolaou, D. Pellottiero, P. Schwalbach, L. Koch, Gamma spectrometry of spent nuclear fuel using a miniature CdTe detector, Nucl. Instrum. Methods Phys. Res. A 376 (2) (1996) 248-253.
  23. C.T. Nguyen, I. Almasi, Z. Hlavathy, J. Zsigrai, L. Lakosi, P. Nagy, T. Parko, I. Pos, Monitoring burn-up of spent fuel assemblies by gamma spectrometry, IEEE Trans. Nucl. Sci. 60 (2) (2013) 1107-1110.
  24. M. Koleska, L. Viererbl, M. Marek, J. Ernest, M. Sunka, M. Vins, Determination of IRT-2M fuel burnup by gamma spectrometry, Appl. Radiat. Isot. 107 (2016) 92-97.
  25. M.V. Mora, A.G. Padilla, J.L.C. Palomino, L.A.A. Terremoto, Nondestructive burnup measurements by gamma-ray spectroscopy on spent fuel elements of the RP-10 research reactor, Prog. Nucl. Energy 53 (4) (2011) 344-353.
  26. T. Makmal, O. Aviv, E. Gilad, A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements, Nucl. Instrum. Methods Phys. Res. A 834 (2016) 175-182.
  27. H.M.O. Parker, M.J. Joyce, The use of ionising radiation to image nuclear fuel: A review, Prog. Nucl. Energy 85 (2015) 297-318.
  28. A. Krakovich, O. Aviv, L. Danon, K. Ben-Meir, Z. Yungrais, S. Halfon, N. Hazenshprung, I. Neder, Depletion measurements using a new gamma transparency method of irradiated MTR-type fuel assemblies, Nucl. Instrum. Methods Phys. Res. A 903 (2018) 224-233.
  29. H. Atak, A. Anastasiadis, P. Jansson, Z. Elter, E.A. Sunden, S. Holcombe, P. Andersson, The degradation of gamma-ray mass attenuation of UOX and MOX fuel with nuclear burnup, Prog. Nucl. Energy 125 (2020) 103359.
  30. S. Pinem, P.H. Liem, T.M. Sembiring, T. Surbakti, Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy, Ann. Nucl. Energy 98 (2016) 211-217.
  31. M. Ravnik, M. Strebl, H. Bock, A. Trkov, I. Mele, Determination of the burn-up of TRIGA fuel elements by calculation and reactivity experiments/Bestimmung des Abbrandes von TRIGA-Brennelementen durch Reaktorberechnungen und Reaktivitatsmessungen, Kerntechnik 57 (5) (1992) 291-295.
  32. T. Buke, H. Yavuz, Fuel Element Burn-Up Calculation in ITU TRIGA Mark-II Reactor, Technical Report, 2002.
  33. Z. Stancar, L. Barbot, C. Destouches, D. Fourmentel, J.-F. Villard, L. Snoj, Computational validation of the fission rate distribution experimental benchmark at the JSI TRIGA mark II research reactor using the Monte Carlo method, Ann. Nucl. Energy 112 (2018) 94-108.
  34. I. Vavtar, A. Pungercic, L. Snoj, Utilisation of JSI TRIGA pulse experiments for testing of nuclear instrumentation and validation of transient models, in: EPJ Web of Conferences, Vol. 225, EDP Sciences, 2020, p. 04027.
  35. Z. Stancar, L. Snoj, An improved thermal power calibration method at the TRIGA Mark II research reactor, Nucl. Eng. Des. 325 (2017) 78-89.
  36. G. Tanja, Z. Gasper, J. Anze, S. Ziga, B. Loic, F. Damien, S. Luka, Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements, Appl. Radiat. Isot. 104 (2015).
  37. A. Trkov, M. Ravnik, H. Bock, B. Glumac, Reactivity measurements in a close-to-critical TRIGA reactor using a digital reactivity meter/Reaktivitatsmessungen in einem nahezu kritischen TRIGA-Reaktor mit einem digitalen Reaktivitatsmessgerat, Kerntechnik 57 (5) (1992) 296-300.
  38. A. Trkov, M. Ravnik, H. Wimmer, B. Glumac, H. Bock, Application of the rod-insertion method for control rod worth measurements in research reactors, Kerntechnik (1987) 60 (5-6) (1995) 255-261.
  39. V. Merljak, M. Kromar, A. Trkov, Rod insertion method analysis - A methodology update and comparison to boron dilution method, Ann. Nucl. Energy 113 (2018) 96-104.
  40. V. Merljak, A. Trkov, I. Lengar, Comparison of measured and calculated integral and differential reactivity worth of control rods in a TRIGA reactor, in: Transactions: RRFM European Research Reactor Conference, 2014, pp. 501-508.
  41. T. Zagar, M. Ravnik, Fuel element burnup determination in HEU-LEU mixed TRIGA research reactor core, in: Abstracts and Papers of the 2000 International RERTR Meeting, 2000, URL http://inis.iaea.org/search/search.aspx?orig_q=RN:42024825.
  42. J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis, Wiley, 1976.
  43. P. Filliatre, C. Jammes, L. Barbot, D. Fourmentel, B. Geslot, I. Lengar, A. Jazbec, L. Snoj, G. Zerovnik, Experimental assessment of the kinetic parameters of the JSI TRIGA reactor, Ann. Nucl. Energy 83 (2015) 236-245.
  44. L. Snoj, A. Kavcic, G. Zerovnik, M. Ravnik, Calculation of kinetic parameters for mixed TRIGA cores with Monte Carlo, Ann. Nucl. Energy 37 (2) (2010) 223-229.
  45. R. Henry, I. Tiselj, L. Snoj, Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP, Appl. Radiat. Isot. 97 (2015) 140-148.
  46. G. Zerovnik, T. Kaiba, V. Radulovic, A. Jazbec, S. Rupnik, L. Barbot, D. Fourmentel, L. Snoj, Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers, Appl. Radiat. Isot. 96 (2015) 27-35.
  47. G. Zerovnik, L. Snoj, A. Trkov, L. Barbot, D. Fourmentel, J.-F. Villard, Measurements of thermal power at the TRIGA Mark II reactor in Ljubljana using multiple detectors, IEEE Trans. Nucl. Sci. 61 (5) (2014) 2527-2531.
  48. M. Aufiero, A. Cammi, C. Fiorina, J. Leppanen, L. Luzzi, M.E. Ricotti, An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor, J. Nucl. Mater. 441 (1-3) (2013) 473-486.
  49. M. Pusa, et al., Numerical Methods for Nuclear Fuel Burnup Calculations, Aalto University, 2013.
  50. N. Roskoff, Development of a Novel Fuel Burnup Methodology and Algorithm in RAPID and its Benchmarking and Automation (Ph.D. thesis), Virginia Tech, 2018.
  51. T. Kulikowska, WIMSD-5B: a Neutronic Code for Standard Lattice Physics Analysis, Distributed by NEA Data Bank. Saclay, France, 1996.
  52. D. Calic, G. Zerovnik, A. Trkov, L. Snoj, Validation of the Serpent 2 code on TRIGA Mark II benchmark experiments, Appl. Radiat. Isot. 107 (2016) 165-170.
  53. M. Chadwick, M. Herman, P. Oblozinsky, M. Dunn, Y. Danon, A. Kahler, D. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D. Brown, R. Capote, A. Carlson, Y. Cho, H. Derrien, K. Guber, G. Hale, S. Hoblit, S. Holloway, T. Johnson, T. Kawano, B. Kiedrowski, H. Kim, S. Kunieda, N. Larson, L. Leal, J. Lestone, R. Little, E. McCutchan, R. MacFarlane, M. MacInnes, C. Mattoon, R. McKnight, S. Mughabghab, G. Nobre, G. Palmiotti, A. Palumbo, M. Pigni, V. Pronyaev, R. Sayer, A. Sonzogni, N. Summers, P. Talou, I. Thompson, A. Trkov, R. Vogt, S. van der Marck, A. Wallner, M. White, D. Wiarda, P. Young, ENDF/BVII.1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (12) (2011) 2887-2996, Special Issue on ENDF/B-VII.1 Library.
  54. M. Chadwick, P. Oblozinsky, M. Herman, N. Greene, R. McKnight, D. Smith, P. Young, R. MacFarlane, G. Hale, S. Frankle, A. Kahler, T. Kawano, R. Little, D. Madland, P. Moller, R. Mosteller, P. Page, P. Talou, H. Trellue, M. White, W. Wilson, R. Arcilla, C. Dunford, S. Mughabghab, B. Pritychenko, D. Rochman, A. Sonzogni, C. Lubitz, T. Trumbull, J. Weinman, D. Brown, D. Cullen, D. Heinrichs, D. McNabb, H. Derrien, M. Dunn, N. Larson, L. Leal, A. Carlson, R. Block, J. Briggs, E. Cheng, H. Huria, M. Zerkle, K. Kozier, A. Courcelle, V. Pronyaev, S. van der Marck, ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets 107 (12) (2006) 2931-3060, Evaluated Nuclear Data File ENDF/B-VII.0.
  55. D. Brown, M. Chadwick, R. Capote, A. Kahler, A. Trkov, M. Herman, A. Sonzogni, Y. Danon, A. Carlson, M. Dunn, D. Smith, G. Hale, G. Arbanas, R. Arcilla, C. Bates, B. Beck, B. Becker, F. Brown, R. Casperson, J. Conlin, D. Cullen, M.-A. Descalle, R. Firestone, T. Gaines, K. Guber, A. Hawari, J. Holmes, T. Johnson, T. Kawano, B. Kiedrowski, A. Koning, S. Kopecky, L. Leal, J. Lestone, C. Lubitz, J. Marquez Damian, C. Mattoon, E. McCutchan, S. Mughabghab, P. Navratil, D. Neudecker, G. Nobre, G. Noguere, M. Paris, M. Pigni, A. Plompen, B. Pritychenko, V. Pronyaev, D. Roubtsov, D. Rochman, P. Romano, P. Schillebeeckx, S. Simakov, M. Sin, I. Sirakov, B. Sleaford, V. Sobes, E. Soukhovitskii, I. Stetcu, P. Talou, I. Thompson, S. van der Marck, L. Welser-Sherrill, D. Wiarda, M. White, J. Wormald, R. Wright, M. Zerkle, G. Zerovnik, Y. Zhu, ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142, Special Issue on Nuclear Reaction Data.
  56. A.J. Plompen, O. Cabellos, C. De Saint Jean, M. Fleming, A. Algora, M. Angelone, P. Archier, E. Bauge, O. Bersillon, A. Blokhin, et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3, Eur. Phys. J. A 56 (7) (2020) 1-108.
  57. P. Anze, C. Dusan, L. Snoj, Burnup calculations of the JSI TRIGA reactor fuel and comparison with measurements, in: EPJ Web of Conferences, Vol. 247, EDP Sciences, 2021, p. 08009.
  58. R. Jeraj, T. Zagar, M. Ravnik, Monte Carlo simulation of the TRIGA Mark II benchmark experiment with burned fuel, Nucl. Technol. 137 (3) (2002) 169-180.
  59. L. Snoj, M. Ravnik, Power peakings in mixed TRIGA cores, Nucl. Eng. Des. 238 (9) (2008) 2473-2479.
  60. V. Mascolino, A. Haghighat, L. Snoj, Verification and validation of RAPID formulations and algorithms based on dosimetry measurements at the JSI TRIGA mark-II reactor, Nucl. Sci. Eng. 195 (9) (2021) 937-953.
  61. V. Mascolino, A. Haghighat, L. Snoj, Development and validation of new algorithms for control rods insertion modeling in the RAPID code system using the JSI TRIGA Mark-II reactor, Ann. Nucl. Energy 166 (2022) 108711.
  62. Stancar Ziga, S. Luka, B. Loic, Reaction rate distribution experiments at the Slovenian JSI TRIGA Mark II research reactor, in: International Handbook of Evaluated Reactor Physics Benchmark Experiments, 2017, TRIGA-FUND-RESR-002 Paris.
  63. M. Ravnik, T. Zagar, A. Persic, Fuel element burnup determination in mixed TRIGA core using reactor calculations, Nucl. Technol. 128 (1) (1999) 35-45.
  64. V. Mascolino, A. Haghighat, N.V. Center, V. Radulovic, L. Snoj, J. Cesta, Experimental validation of RAPID based on JSI TRIGA reactor dosimetry, in: Proc. 29th Int. Conf. Nuclear Energy for New Europe, Nuclear Society of Slovenia, 2020, pp. 7-10.
  65. V. Mascolino, Development and Benchmarking of Advanced FM-based Particle Transport Algorithms for Steady-state and Transient Conditions, Implementation in RAPID and Its VRS Web-application (Ph.D. thesis), Virginia Tech, 2021.