Acknowledgement
The authors thank an anonymous reviewer for providing insightful·and constructive comments on the original manuscript, which led to significant improvement of the manuscript. This work is supported by National Natural Science of China (Grant No. 52278302, 51508148) and Hefei Municipal Natural Science Foundation (No. 2021028).
References
- R. Pang, D. Zai, B. Xu, J. Liu, C. Zhao, Q. Fan, et al., Stochastic dynamic and reliability analysis of AP1000 nuclear power plants via DPIM subjected to mainshock-aftershock sequences, Reliab. Eng. Syst. Saf. v235 (2023), https://doi.org/10.1016/j.ress.2023.109217.
- F. Pugliese, L. Di Sarno, Effects of mainshock-aftershock sequences on fragility analysis of RC buildings with ageing, Eng. Struct. v232 (2021), https://doi.org/10.1016/j.engstruct.2020.111837.
- M.R. Salami, M.M. Kashani, K. Goda, Influence of advanced structural modelling and subduction mainshock-aftershock sequences on seismic fragility of RC structures, in: 11th National Conference on Earthquake Engineering 2018: Integrating Science, Engineering, and Policy, NCEE 2018, 2018, 24/06/18 - 28/06/18.
- J.E. Association, Codes for Aseismic Design of Nuclear Power Plants, 2009. JEAC4601-2008.
- C. Zhao, N. Yu, T. Peng, Probabilistic seismic fragility assessment of isolated nuclear power plant structure using IDA and MSA methods, Structures v34 (2021) 1300-1311, https://doi.org/10.1016/j.istruc.2021.08.034.
- C. Zhao, N. Yu, T. Peng, A. Gautam, Y.L. Mo, Vulnerability assessment of AP1000 NPP under mainshock-aftershock sequences, Engineering Structures v208 (2020) 110348, https://doi.org/10.1016/j.engstruct.2020.110348.
- J. Shen, X. Ren, Y. Zhang, J. Chen, Nonlinear dynamic analysis of frame-core tube building under seismic sequential ground motions by a supercomputer, Soil Dynam. Earthq. Eng. v124 (2019) 86-97, https://doi.org/10.1016/j.soildyn.2019.05.036.
- L. Di Sarno, J.-R. Wu, Fragility assessment of existing low-rise steel moment-resisting frames with masonry infills under mainshock-aftershock earthquake sequences, Bull. Earthq. Eng. v19 (6) (2021) 2483-2504, https://doi.org/10.1007/s10518-021-01080-6.
- C. Amadio, M. Fragiacomo, S. Rajgelj, The effects of repeated earthquake ground motions on the non-linear response of SDOF systems, Earthq. Eng. Struct. Dynam. v32 (2) (2003) 291-308, https://doi.org/10.1002/eqe.225.
- W. Wen, C. Zhai Ji D.F., Damage spectra of global crustal seismic sequences considering scaling issues of aftershock ground motions, Earthq. Eng. Struct. Dynam. v47 (10) (2018) 2076-2093, https://doi.org/10.1002/eqe.3056.
- X. Yu, Z. Zhou, W. Du, D. Lu, Development of fragility surfaces for reinforced concrete buildings under mainshock-aftershock sequences, Earthq. Eng. Struct. Dynam. v50 (15) (2021) 3981-4000, https://doi.org/10.1002/eqe.3542.
- X. Yu, Y. Qiao, K. Dai, J. Tao, D. Lu, Incremental damage analysis of nonlinear single-degree-freedom systems subjected to mainshock-aftershock earthquake sequences, Eng. Mech. v36 (3) (2019) 121-130, https://doi.org/10.6052/j.issn.1000-4750.2017.12.0941.
- E. Omranian, A. Abdelnaby, G. Abdollahzadeh, M. Rostamian, F. Hosseinpour, Fragility curve development for the seismic vulnerability assessment of retrofitted RC bridges under mainshock-aftershock seismic sequences, Structures Congress (2018) 308-316.
- J. Ghosh, Parameterized seismic reliability assessment and life-cycle analysis of aging highway bridges, Rice University (2013) 3577517. Dissertations & Theses - Gradworks.
- Q. Li, B.R. Ellingwood, Performance evaluation and damage assessment of steel frame buildings under main shock-aftershock earthquake sequences, Earthq. Eng. Struct. Dynam. v36 (3) (2007) 405-427, https://doi.org/10.1002/eqe.667.
- C.A. Cornell, F. Jalayer, R.O. Hamburger, D.A. Foutch, Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines, Journal of Structural Engineering-ASCE v128 (4) (2002), https://doi.org/10.1061/(ASCE)0733-9445(2002)128).
- C. Zhao, L. Zhou, S. Huang, A. Gautam, Seismic fragility assessment on the postmainshock damaged shield building considering aftershock duration and damage ratio, Bull. Earthq. Eng. v20 (2022) 6047-6074, https://doi.org/10.1007/s10518-022-01430-y.
- M. Smith, ABAQUS/Standard User's Manual, 2009. Version 6.9.
- J Lubliner, J Oliver, S Oller, E O?Ate, A plastic-damage model for concrete, Int. J. Solid Struct. 198925 299-326.
- D. Wang, C. Wu, Y. Zhang, Z. Ding, W. Chen, Elastic-plastic behavior of AP1000 nuclear island structure under mainshock-aftershock sequences, Ann. Nucl. Energy v123 (2018) 1-17, https://doi.org/10.1016/j.anucene.2018.09.015.
- R.H. Li, C. Li, H.N. Li, G. Yang, P. Zhang, Improved estimation on seismic behavior of RC column members: a probabilistic method considering dynamic effect and structural parameter uncertainties, Struct. Saf. v101 (2023), https://doi.org/10.1016/j.strusafe.2022.102308.
- Q. Wang, P. Yi, Sesimic responses of CPR1000 safety building on rigid foundation, Low Temp Archit Technol 10 (2014) 108-111.
- J. Chen, C. Zhao, Q. Xu, C. Yuan, Seismic analysis and evaluation of the base isolation system in AP1000 NI under SSE loading, Nucl. Eng. Des. 278 (2014) 117-133.
- C. Zhao, J. Chen, Q. Xu, FSI effects and seismic performance evaluation of water storage tank of AP1000 subjected to earthquake loading, Nucl. Eng. Des. 280 (2014) 372-388, https://doi.org/10.1016/j.nucengdes.2014.08.024.
- Li. Yuanjun, Codes on the Safety of Nuclear Power Plants in Relation to Seismic Design, Applied Mechanics and Materials v256-259 (2013) 2085-2090. https://doi.org/10.4028/www.scientific.net/AMM.256-259.2085.
- ASCE4-98, Seismic analysis of safety-related nuclear structures and commentary, American Society of Civil, Engineers publication, Virginia, 2000. ISBN: 9780784404331.
- J. Ruiz-Garcia, J.C. Negrete-Manriquez, Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock-aftershock seismic sequences, Eng. Struct. v33 (2) (2011) 621-634, https://doi.org/10.1016/j.engstruct.2010.11.021.
- K. Goda, Nonlinear response potential of mainshock-aftershock sequences from Japanese earthquakes, Bull. Seismol. Soc. Am. v102 (5) (2012) 2139-2156, https://doi.org/10.1785/0120110329.
- M. Alembagheri, M. Ghaemian, Damage assessment of a concrete arch dam through nonlinear incremental dynamic analysis, Soil Dynam. Earthq. Eng. v44 (0267-7261) (2013) 127-137.
- Y. Huang, A.S. Whittaker, N. Luco, R.O. Hamburger, Scaling earthquake ground motions for performance-based assessment of buildings, J. Struct. Eng. v137 (3) (2011) 311-321, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000155.
- X. Liu, X. Li, X. Wang, N. Wang, Z. Li, Seismic fragility analysis of the transfer and purging chamber in a nuclear power plant based on incremental dynamic analysis, Journal of Radiation Research and Applied Sciences v15 (3) (2022) 133-141, https://doi.org/10.1016/j.jrras.2022.07.003.
- F. Sidoroff, Description of Anisotropic Damage Application to Elasticity. Physical Non-linearities in Structural Analysis: Symposium Senlis, France May1980: 27-30, Springer Berlin Heidelberg, Berlin, Heidelberg, 1981, pp. 237-244.
- W. Chen, D. Wang, Y. Zhang, Seismic fragility analysis of nuclear power plants based on the substructure method, Nucl. Eng. Des. v382 (2021) 111389, https://doi.org/10.1016/j.nucengdes.2021.111389.
- G. Grunthal, European Macroseismic Scale 1998 (EMS-98). European Seismological: European Macroseismic Scale 1998 (EMS-98), European Seismological, 1998.
- X. Gu, X. Jin, Y. Zhou, Basic Principles of Concrete Structures, Springer, 2016.
- C.Z.A. C, B. Ny, T.P. A, A.G. D, Y.L.M. D, Vulnerability assessment of AP1000 NPP under mainshock-aftershock sequences - ScienceDirect, Eng. Struct. v208 (2020), https://doi.org/10.1016/j.engstruct.2020.110348.
- Z. Guo, X. Shi, Principle and Analysis of Reinforced Concrete, Tsinghua University Publication, Beijing, China, 2003.