DOI QR코드

DOI QR Code

Improved FMM for well locations optimization in in-situ leaching areas of sandstone uranium mines

  • Mingtao Jia (School of Resources and Safety Engineering, Central South University) ;
  • Bosheng Luo (School of Resources and Safety Engineering, Central South University) ;
  • Fang Lu (Hunan Women's University) ;
  • YiHan Yang (Inner Mongolia Mining Co., Ltd.) ;
  • Meifang Chen (Beijing Research Institute of Chemical Engineering Metallurgy) ;
  • Chuanfei Zhang (Inner Mongolia Mining Co., Ltd.) ;
  • Qi Xu (Inner Mongolia Mining Co., Ltd.)
  • 투고 : 2023.11.05
  • 심사 : 2024.04.15
  • 발행 : 2024.09.25

초록

Rapidly obtaining the coverage characteristics of leaching solution in In-situ Leaching Area of Sandstone Uranium Mines is a necessary condition for optimizing well locations reasonably. In the presented study, the improved algorithm of the Fast Marching Method (FMM) was studied for rapidly solving coverage characteristics to replace the groundwater numerical simulator. First, the effectiveness of the FMM was verified by simulating diffusion characteristics of the leaching solution in In-situ Leaching Area. Second, based on the radial flow pressure equation and the interaction mechanism of the front diffusion of production and injection well flow field, an improved FMM which is suitable for In-situ Leaching Mining, was developed to achieve the co-simulation of production and injection well. Finally, the improved algorithm was applied to engineering practice to guide the design and production. The results show that the improved algorithm can efficiently solve the coverage characteristics of leaching solution, which is consistent with those obtained from traditional numerical simulators. In engineering practice, the improved FMM can be used to rapidly analyze the leaching process, delineate Leaching Blind Spots, and evaluate the rationality of well pattern layout. Furthermore, it can help to achieve iterative optimization and rapid decision-making of production and injection well locations under largescale mining area models.

키워드

참고문헌

  1. Q. Yan, A. Wang, G. Wang, W. Yu, Q. Chen, Nuclear power development in China and uranium demand forecast: based on analysis of global current situation, Prog. Nucl. Energy 53 (6) (2011) 742-747.
  2. W. Xing, A. Wang, Q. Yan, S. Chen, A study of China's uranium resources security issues: based on analysis of China's nuclear power development trend, Ann. Nucl. Energy 110 (2017) 1156-1164.
  3. J.S. Morrell, M.J. Jackson (Eds.), Uranium Processing and Properties, Springer, New York, 2013.
  4. G.M. Mudd, Critical review of acid in situ leach uranium mining: 1. USA and Australia, Environ. Geol. 41 (2001) 390-403.
  5. X. Zhou, W. Wang, Q. Niu, Q. Wang, X. Su, G. Zhou, B. Sun, Geochemical reactions altering the mineralogical and multiscale pore characteristics of uranium-bearing reservoirs during CO2+ O2in situ leaching, Front. Earth Sci. 10 (2023) 1094880.
  6. I.M.S.K. Ilankoon, Y. Tang, Y. Ghorbani, S. Northey, M. Yellishetty, X. Deng, D. McBride, The current state and future directions of percolation leaching in the Chinese mining industry: challenges and opportunities, Miner. Eng. 125 (2018) 206-222.
  7. W. Wang, X. Liang, Q. Niu, Q. Wang, J. Zhuo, X. Su, Z. Ji, Reformability evaluation of blasting-enhanced permeability in in situ leaching mining of low-permeability sandstone-type uranium deposits, Nucl. Eng. Technol. 55 (8) (2023) 2773-2784.
  8. I.M.S.K. Ilankoon, Y. Tang, Y. Ghorbani, S. Northey, M. Yellishetty, X. Deng, D. McBride, The current state and future directions of percolation leaching in the Chinese mining industry: challenges and opportunities, Miner. Eng. 125 (2018) 206-222.
  9. N.M. Shayakhmetov, K.A. Alibayeva, A. Kaltayev, I. Panfilov, Enhancing uranium in-situ leaching efficiency through the well reverse technique: a study of the effects of reversal time on production efficiency and cost, Hydrometallurgy 106086 (2023).
  10. M.S. Tungatarova, M.B. Kurmanseiit, N.M. Shayakhmetov, Gpu accelerated modeling of in-situ leaching process and streamline based reactive transport simulation, Procedia Comput. Sci. 178 (2020) 145-152.
  11. N.M. Shayakhmetov, M.B. Kurmanseiit, D.Y. Aizhulov, Study of the optimality of hexagonal well location modes during the in-situ leaching of mineral, Kompleksnoe Ispolzovanie Mineralnogo Syra= Complex. Miner. Resour. 309 (2) (2019) 76-82.
  12. M.J. Lottering, L. Lorenzen, N.S. Phala, J.T. Smit, G.A.C. Schalkwyk, Mineralogy and uranium leaching response of low grade South African ores, Miner. Eng. 21 (1) (2008) 16-22.
  13. Y. Ghorbani, M.R. Montenegro, Leaching behaviour and the solution consumption of uranium-vanadium ore in alkali carbonate-bicarbonate column leaching, Hydrometallurgy 161 (2016) 127-137.
  14. S. Zeng, J. Song, B. Sun, F. Wang, W. Ye, Y. Shen, H. Li, Seepage characteristics of the leaching solution during in situ leaching of uranium, Nucl. Eng. Technol. 55 (2) (2023) 566-574.
  15. S. Zeng, J. Li, K. Tan, S. Zhang, Fractal kinetic characteristics of hard-rock uranium leaching with sulfuric acid, R. Soc. Open Sci. 5 (9) (2018) 180403.
  16. M. Chen, X. Su, W. Chen, Study on well spacing in in-situ leaching mining based on the tubular leaching experiment, China Mining. Magazin. 30 (7) (2021) 181-186.
  17. Y. Yang, W. Qiu, Z. Liu, J. Song, J. Wu, Z. Dou, J. Wu, Quantifying the impact of mineralogical heterogeneity on reactive transport modeling of CO 2+ O 2 in-situ leaching of uranium, Acta Geochimica (2022) 1-14.
  18. R.H. Johnson, H. Tutu, Predictive reactive transport modeling at a proposed uranium in situ recovery site with a general data collection guide, Mine Water Environ. 35 (3) (2016) 369.
  19. R.F. Embile Jr., I.F. Walder, J.J. Mahoney, Multicomponent reactive transport modeling of effluent chemistry using locally obtained mineral dissolution rates of forsterite and pyrrhotite from a mine tailings deposit, Adv. Water Resour. 128 (2019) 87-96.
  20. V. Lagneau, O. Regnault, M. Descostes, Industrial deployment of reactive transport simulation: an application to uranium in situ recovery, Rev. Mineral. Geochem. 85 (1) (2019) 499-528.
  21. N.M. Shayakhmetov, D.Y. Aizhulov, K.A. Alibayeva, S. Serovajsky, I. Panfilov, Application of hydrochemical simulation model to determination of optimal well pattern for mineral production with in-situ leaching, Procedia Comput. Sci. 178 (2020) 84-93.
  22. Z. Guo, M.L. Brusseau, The impact of well-field configuration and permeability heterogeneity on contaminant mass removal and plume persistence, J. Hazard Mater. 333 (2017) 109-115.
  23. A. Nardi, A. Idiart, P. Trinchero, L.M. de Vries, J. Molinero, Interface COMSOLPHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry, Comput. Geosci. 69 (2014) 10-21.
  24. C. Zhou, H. Wang, T. Wu, et al., Simulation study on clogging of suspended particles in in-situ leaching of uranium at different concentrations and flow velocity, Physicochem. Probl. Miner. Process. 59 (2) (2023).
  25. B. Sun, S.S. Hou, S. Zeng, X. Bai, S.W. Zhang, J. Zhang, 3D characterization of porosity and minerals of low-permeability uranium-bearing sandstone based on multi-resolution image fusion, Nucl. Sci. Tech. 31 (10) (2020) 105.
  26. J. Langanay, T. Romary, X. Freulon, V. Langlais, G. Petit, V. Lagneau, Uncertainty quantification for uranium production in mining exploitation by in Situ Recovery, Comput. Geosci. 25 (2021) 831-850.
  27. B. Wang, Y. Luo, J.Z. Qian, J.H. Liu, X. Li, Y.H. Zhang, J. Huang, Machine learning-based optimal design of the in-situ leaching process parameter (ISLPP) for the acid in-situ leaching of uranium, J. Hydrol. 626 (2023) 130234.
  28. R. Yousefzadeh, M. Sharifi, Y. Rafiei, An efficient method for injection well location optimization using Fast Marching Method, J. Petrol. Sci. Eng. 204 (2021) 108620.
  29. J.A. Sethian, A.M. Popovici, 3-D traveltime computation using the fast marching method, Geophysics 64 (2) (1999) 516-523.
  30. M. Sharifi, M. Kelkar, A. Bahar, T. Slettebo, Dynamic ranking of multiple realizations by use of the fast-marching method, SPE J. 19 (6) (2014) 1069-1082.
  31. A. Datta-Gupta, N. Gupta, M.J. King, W.J. Lee, Radius of investigation and its generalization to unconventional reservoirs, J. Petrol. Technol. 63 (7) (2011) 52-55.
  32. Y. Zhang, C. Yang, M.J. King, A. Datta-Gupta, Fast-marching methods for complex grids and anisotropic permeabilities: application to unconventional reservoirs, in: SPE Reservoir Simulation Symposium, OnePetro, 2013, February.
  33. B. Pouladi, S. Keshavarz, M. Sharifi, M.A. Ahmadi, A robust proxy for production well placement optimization problems, Fuel 206 (2017) 467-481.
  34. Y. Yang, W. Qiu, Z. Liu, J. Song, J. Wu, Z. Dou, J. Wu, Quantifying the impact of mineralogical heterogeneity on reactive transport modeling of CO 2+ O 2 in-situ leaching of uranium, Acta Geochimica (2022) 1-14.
  35. C. Li, M.J. King, Impact of heterogeneity upon the accuracy of the Eikonal solution using the fast marching method, Comput. Geosci. (2023) 1-20.
  36. C. Li, M.J. King, Integration of pressure transient data into reservoir models using the fast marching method, SPE J. 25 (4) (2020) 1557-1577.
  37. M. Jia, Q. Jiang, Q. Xu, X. Su, Influence of hydraulic conditions on seepage characteristics of loose sandstone, Lithosphere 2024 (1) (2024) lithosphere_2023_275.
  38. X. Li, Underground Oil and Gas Seepage Mechanics, Petroleum Industry Press, Beijing, 2008, pp. 27-30.
  39. B. Pouladi, M. Sharifi, M. Ahmadi, M. Kelkar, Fast marching method assisted sector modeling: application to simulation of giant reservoir models, J. Petrol. Sci. Eng. 149 (2017) 707-719.
  40. S. Zeng, Y. Shen, B. Sun, K. Tan, S. Zhang, W. Ye, Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone, Nucl. Eng. Technol. 54 (4) (2022) 1175-1184.