DOI QR코드

DOI QR Code

Computational study of the Nitrogen-16 source term in the ITER vacuum vessel cooling circuit through the coupling of system-level analysis code and CFD

  • M. De Pietri (Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia (UNED)) ;
  • C. Fiorina (Department of Nuclear Engineering, Texas A&M University) ;
  • Y. Le Tonqueze (ITER Organization) ;
  • R. Juarez (Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia (UNED))
  • Received : 2023.11.15
  • Accepted : 2024.03.03
  • Published : 2024.08.25

Abstract

In ITER, the evaluation of the activated water radiation source and its impact on the radiological levels is necessary to demonstrate compliance with the safety requirements. The use of simplified or conservative approaches often results in the application of expensive constraints on the installation that impact its economics, operations, and construction schedule. In this work, we propose a novel methodology to calculate the activated water source term with a higher degree of realism. The methodology is based on the coupling of a system-level code with a Computational Fluid Dynamics (CFD) code in an explicit, one-way approach. We apply this methodology to the evaluation of the16N radioisotope within the ITER Vacuum Vessel Primary Heat Transfer System (VV-PHTS) cooling circuit in a steady-state and transient scenarios. We chose this system since previous analyses of the VV-PHTS were done with simple, ad-hoc calculations that yielded results that differed by up to a factor of five, underscoring a higher level of uncertainty. As a result, we generate a computational model of the source term that can be used to evaluate the radiological condition surrounding the cooling systems during the operations.

Keywords

Acknowledgement

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. We appreciate the support given by: MINECO for the funding of the Juan de la Cierva-incorporacion program 2016; and for the funding under I+D+i-Retos Investigaciof the Prj. ENE2015-70733R; Comunidad de Madrid under I+D en Tecnologias, Prj. TECHNOFUSION (III)-CM, S2018/EMT-4437; Escuela Tecnica Superior de Ingenieros Industriales (UNED) of Spain, project 2023-ETSII-UNED-03; and UNED for the funding of the predoctoral contracts (FPI) and of the open access publishing. We also extend our appreciation to Julien Champigny (ITER Organization) for sharing with us access to the existing simulation models and for his precious feedback. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

References

  1. Z. Ghani, A. Turner, S. Mangham, J. Naish, M. Lis, L. Packer, M. Loughlin, Radiation levels in the ITER tokamak complex during and after plasma operation, Fusion Eng. Des. 96-97 (2015) 261-264, Proceedings of the 28th Symposium On Fusion Technology (SOFT-28).
  2. M. Loughlin, M. Angelone, P. Batistoni, L. Bertalot, J. Eskhult, C. Konno, R. Pampin, A. Polevoi, E. Polunovskiy, Status and verification strategy for ITER neutronics, Fusion Eng. Des. 89 (9-10) (2014) 1865-1869.
  3. A. Kolsek, F. Ogando, R. Pampin, A.J. Lopez-Revelles, J. Sanz, R. Juarez, Shielding proposal to mitigate the PFC# 2 heating due to 16N decay photon radiation from the activated cooling water, Fusion Eng. Des. 148 (2019) 111298.
  4. A. Zohar, I. Lengar, L. Snoj, Analysis of water activation in fusion and fission nuclear facilities, Fusion Eng. Des. 160 (2020) 111828.
  5. Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design, Nuclear Energy Series, (NR-T-1.20) International Atomic Energy Agency, Vienna, 2022.
  6. S. Jakhar, Nuclear Analysis of 16N and 17N radiation fields from TCWS activated water (ITER_D_QZ7BEK_v2.1), 2016, Unpublished technical report, ITER IO.
  7. E. Polunovskiy, Assessment of the residual specific activities of N-16, N-17, and O-19 at the returns of the VV and IBED-PHTS (ITER_D_2SATC2 v1.5), 2020, Unpublished technical report, ITER IO.
  8. D. Lioce, S. Orlandi, M. Moteleb, A. Ciampichetti, L. Afzali, N. Ghirelli, B. Guo, M. Tomasello, D. Whitted, M. Giammei, et al., ITER tokamak cooling water system design status, Fusion Sci. Technol. 75 (8) (2019) 841-848.
  9. M. De Pietri, J. Alguacil, A. Kolsek, G. Pedroche, N. Ghirelli, E. Polunovskiy, M. Loughlin, Y. Le Tonqueze, J. Sanz, R. Juarez, Integral modelling of the ITER cooling water systems radiation source for applications outside of the Bio-shield, Fusion Eng. Des. 171 (2021) 112575.
  10. A. Pucciarelli, A. Toti, D. Castelliti, F. Belloni, K. Van Tichelen, M. Moscardini, F. Galleni, N. Forgione, Coupled system thermal Hydraulics/CFD models: General guidelines and applications to heavy liquid metals, Ann. Nucl. Energy 153 (2021) 107990.
  11. M. De Pietri, FLUNED, 2023, http://dx.doi.org/10.5281/zenodo.8301177, URL: https://github.com/marco-de-pietri/FLUNED-repository.
  12. C. Greenshields, OpenFOAM v11 User Guide, The OpenFOAM Foundation, London, UK, 2023, URL: https://doc.cfd.direct/openfoam/user-guide-v11.
  13. M. De Pietri, J. Alguacil, E. Rodriguez, R. Juarez, Development and validation in water of FLUNED, an open-source tool for fluid activation calculations, Comput. Phys. Comm. 291 (2023) 108807.
  14. U. Fischer, C. Bachmann, J. Catalan, T. Eade, D. Flammini, M. Gilbert, J.-C. Jaboulay, A. Konobeev, D. Leichtle, L. Lu, et al., Methodological approach for DEMO neutronics in the European PPPT programme: Tools, data and analyses, Fusion Eng. Des. 123 (2017) 26-31.
  15. F. Cau, F4E-OMF-578-01-01-01-CFD analysis VV regular sector #05 - C-model (ITER_D_6L4J5W v1.0), 2017, Unpublished technical report, ITER IO.
  16. D. Leichtle, B. Colling, M. Fabbri, R. Juarez, M. Loughlin, R. Pampin, E. Polunovskiy, A. Serikov, A. Turner, L. Bertalot, The ITER tokamak neutronics reference model C-Model, Fusion Eng. Des. 136 (2018) 742-746.
  17. P. Sauvan, R. Juarez, G. Pedroche, J. Alguacil, J. Catalan, F. Ogando, J. Sanz, D1SUNED system for the determination of decay photon related quantities, Fusion Eng. Des. 151 (2020) 111399.
  18. C.J. Werner, J.S. Bull, C.J. Solomon, F.B. Brown, G.W. McKinney, M.E. Rising, D.A. Dixon, R.L. Martz, H.G. Hughes, L.J. Cox, A.J. Zukaitis, J.C. Armstrong, R.A. Forster, L. Casswell, MCNP version 6.2 release notes, 2018, http://dx.doi.org/10.2172/1419730, URL: https://www.osti.gov/biblio/1419730.
  19. R. Forrest, R. Capote, N. Otsuka, T. Kawano, A. Koning, S. Kunieda, J.-C. Sublet, Y. Watanabe, FENDL-3 Library-Summary Documentation, Technical Report, International Atomic Energy Agency, 2012.
  20. A. Van Wijk, G. Van den Eynde, J. Hoogenboom, An easy to implement global variance reduction procedure for MCNP, Ann. Nucl. Energy 38 (11) (2011) 2496-2503.
  21. D.P. Combest, P.A. Ramachandran, M.P. Dudukovic, On the gradient diffusion hypothesis and passive scalar transport in turbulent flows, Ind. Eng. Chem. Res. 50 (15) (2011) 8817-8823.
  22. J. Schleiffer, J.-P. Adloff, Formes chimiques de l'azote 16 produit par la reaction 16o (n, p) dans l'eau, Radiochim. Acta 3 (3) (1964) 145-151.
  23. J.-U. Kreft, C. Picioreanu, J.W. Wimpenny, M.C. van Loosdrecht, Individual-based modelling of biofilms, Microbiology 147 (11) (2001) 2897-2912.
  24. T. Casper, Y. Gribov, A. Kavin, V. Lukash, R. Khayrutdinov, H. Fujieda, C. Kessel, I.D. Agencies, et al., Development of the ITER baseline inductive scenario, Nucl. Fusion 54 (1) (2013) 013005.
  25. ASME B36.10M-2018, Welded and Seamless Wrought Steel Pipe, The American Society of Mechanical Engineers, New York, NY, USA, 2018.
  26. ASME B36.19M-2018, Stainless Steel Pipe, The American Society of Mechanical Engineers, New York, NY, USA, 2018.
  27. A. Davis, R. Pampin, Benchmarking the MCR2S system for high-resolution activation dose analysis in ITER, Fusion Eng. Des. 85 (1) (2010) 87-92.
  28. V. Radulovic, S. Rupnik, J. Naish, S. Bradnam, Z. Ghani, S. Popovichev, V. Kiptily, P. Batistoni, R. Villari, L. Snoj, et al., Preparation of a water activation experiment at JET to support ITER, Fusion Eng. Des. 169 (2021) 112410.
  29. D. Kotnik, A.K. Basavaraj, L. Snoj, I. Lengar, Design optimization of the closed-water activation loop at the JSI irradiation facility, Fusion Eng. Des. 193 (2023) 113632.
  30. J. Westerweel, G.E. Elsinga, R.J. Adrian, Particle image velocimetry for complex and turbulent flows, Annu. Rev. Fluid Mech. 45 (2013) 409-436.
  31. Radiotracer applications in industry, Technical Reports Series, (no. 423) International Atomic Energy Agency, Vienna, 2004, URL: https://www.iaea.org/publications/6751/radiotracer-applications-in-industry.
  32. S. Goswami, J. Biswal, V.K. Sharma, J.S. Samantray, R. Gupta, S. Singhal, H.J. Pant, Investigation of flow dynamics of molten glass in different solar glass production units using radiotracer method, Appl. Radiat. Isot. 193 (2023) 110662.
  33. M. Sheoran, A. Chandra, H. Bhunia, P.K. Bajpai, H.J. Pant, Residence time distribution studies using radiotracers in chemical industry-A review, Chem. Eng. Commun. 205 (6) (2018) 739-758.