DOI QR코드

DOI QR Code

Challenges and prospects of using live feed substitutes for larval fish

  • Solomon Melaku (Department of Animal Science, College of Agriculture and Natural Resource Science, Debre Berhan University) ;
  • Akewake Geremew (Department of Zoological Sciences, College of Natural and Computational Science, Addis Ababa University) ;
  • Abebe Getahun (Department of Zoological Sciences, College of Natural and Computational Science, Addis Ababa University) ;
  • Seyoum Mengestou (Department of Zoological Sciences, College of Natural and Computational Science, Addis Ababa University) ;
  • Amha Belay (ALGAE4ALL, LLC Latigo Cir.)
  • Received : 2023.10.20
  • Accepted : 2024.04.08
  • Published : 2024.08.31

Abstract

Larviculture of commercially important aquaculture species faced limitations associated to the incomplete understanding of larval nutrition and the inability to total replacement of live feeds by formulated diets at the early larval stage. The main challenges to alternatives of live feed in larval fish culture are related to the inherent behaviors of the larvae and the incomplete knowledge and practice leading to the inefficiency of using micro diets. Although significant achievement has been reached in the complete replacement of live feeds by formulated micro diets in freshwater species and marine shrimps, its success is far from complete in marine finfishes. However, recent progress in biotechnological advances in manufacturing process and advanced knowledge of the nutritional necessities of larvae indicated improvements in the field. A range of technologies in the manufacturing of micro diets for larval fish are in place currently. To this end, several achievements of substituting live feeds with formulated micro diets at later stages of larval development have been reported by various researchers providing a clue on the prospects for the future. Therefore, the objective of this review is to compile existing information on the challenges of substituting live feeds by formulated diets in the past and prospects for future development.

Keywords

References

  1. Alam MS, Watanabe WO, Rezek TC, Myers AR, Carroll PM, Daniels HV. Growth performance, survival and body composition of southern flounder Paralichthys lethostigma larvae fed different formulated microdiets. Aquac Res. 2015;46:1924-36.  https://doi.org/10.1111/are.12347
  2. Blair T, Castell J, Neil S, D'Abramo L, Cahu C, Harmon P, et al. Evaluation of microdiets versus live feeds on growth, survival and fatty acid composition of larval haddock (Melanogrammus aeglefinus). Aquaculture. 2003;225:451-61.  https://doi.org/10.1016/S0044-8486(03)00309-0
  3. Campoverde C, Estevez A. The effect of live food enrichment with docosahexaenoic acid (22:6n-3) rich emulsions on growth, survival and fatty acid composition of meagre (Argyrosomus regius) larvae. Aquaculture. 2017;478:16-24.  https://doi.org/10.1016/j.aquaculture.2017.05.012
  4. Chauton MS, Reitan KI, Norsker NH, Tveteras R, Kleivdal HT. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture. 2015;436:95-103.  https://doi.org/10.1016/j.aquaculture.2014.10.038
  5. Cheng SH, Aoki S, Maeda M, Hino A. Competition between the rotifer Brachionus rotundiformis and the ciliate Euplotes vannus fed on two different algae. Aquaculture. 2004;241:331-43.  https://doi.org/10.1016/j.aquaculture.2004.08.006
  6. Cho SH, Hur SB, Jo JY. Effect of enriched live feeds on survival and growth rates in larval Korean rockfish, Sebastes schlegeli Hilgendorf. Aquac Res. 2001;32:199-208.  https://doi.org/10.1046/j.1365-2109.2001.00547.x
  7. Conceicao LEC, Morais S, Ronnestad I. Tracers in fish larvae nutrition: a review of methods and applications. Aquaculture. 2007;267:62-75.  https://doi.org/10.1016/j.aquaculture.2007.02.035
  8. Conceicao LEC, Yufera M, Makridis P, Morais S, Dinis MT. Live feeds for early stages of fish rearing. Aquac Res. 2010;41:613-40.  https://doi.org/10.1111/j.1365-2109.2009.02242.x
  9. Craig MP, Desai MB, Olukalns KE, Afton SE, Caruso JA, Hove JR. Unsupplemented Artemia diet results in reduced growth and jaw dysmorphogenesis in zebrafish. In: Muchlisin Z, editor. Aquaculture/book I. London: InTechOpen; 2012. p. 35-42. 
  10. Curnow J, King J, Bosmans J, Kolkovski S. The effect of reduced Artemia and rotifer use facilitated by a new microdiet in the rearing of barramundi Lates calcarifer (Bloch) larvae. Aquaculture. 2006a;257:204-13.  https://doi.org/10.1016/j.aquaculture.2006.02.073
  11. Curnow J, King J, Partridge G, Kolkovski S. Effects of two commercial microdiets on growth and survival of barramundi (Lates calcarifer Bloch) larvae within various early weaning protocols. Aquac Nutr. 2006b;12:247-55.  https://doi.org/10.1111/j.1365-2095.2006.00399.x
  12. D'Abramo LR. Challenges in developing successful formulated feed for culture of larval fish and crustaceans. In: Proceedings of the Memorias del VI Simposium Internacional de Nutricion Acuicola; 2002; Cancun, Mexico. 
  13. Darias MJ, Mazurais D, Koumoundouros G, Glynatsi N, Christodoulopoulou S, Huelvan C, et al. Dietary vitamin D3 affects digestive system ontogenesis and ossification in European sea bass (Dicentrachus labrax, Linnaeus, 1758). Aquaculture. 2010;298:300-7.  https://doi.org/10.1016/j.aquaculture.2009.11.002
  14. Darias MJ, Murray HM, Martinez-Rodriguez G, Cardenas S, Yufera M. Gene expression of pepsinogen during the larval development of red porgy (Pagrus pagrus). Aquaculture. 2005;248:245-52.  https://doi.org/10.1016/j.aquaculture.2005.04.044
  15. Drillet G, Frouel S, Sichlau MH, Jepsen PM, Hojgaard JK, Joarder AK, et al. Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture. 2011;315:155-66.  https://doi.org/10.1016/j.aquaculture.2011.02.027
  16. Eryalcin KM. Effects of different commercial feeds and enrichments on biochemical composition and fatty acid profile of rotifer (Brachionus plicatilis, Muller 1786) and Artemia franciscana. Turk J Fish Aquat Sci. 2018;18:81-90.  https://doi.org/10.4194/1303-2712-v18_1_09
  17. Fernandez-Diaz C, Pascual E, Yufera M. Feeding behaviour and prey size selection of gilthead seabream, Sparus aurata, larvae fed on inert and live food. Mar Biol. 1994;118:323-8.  https://doi.org/10.1007/BF00349800
  18. Fernandez-Palacios H, Norberg B, Izquierdo M, Hamre K. Effects of broodstock diet on eggs and larvae. In: Joan Holt G, editor. Larval fish nutrition. Newark, NJ: John Wiley & Sons; 2011. 
  19. Fletcher RC Jr, Roy W, Davie A, Taylor J, Robertson D, Migaud H. Evaluation of new microparticulate diets for early weaning of Atlantic cod (Gadus morhua): implications on larval performances and tank hygiene. Aquaculture. 2007;263:35-51.  https://doi.org/10.1016/j.aquaculture.2006.09.019
  20. Fontaine CT, Revera DB. The mass culture of the rotifer, Brachionus plicatilis, for use as foodstuff in aquaculture. In: Proceedings of the World Mariculture Society; 1980; Oxford, UK. 
  21. Gisbert E, Ortiz-Delgado JB, Sarasquete C. Nutritional cellular biomarkers in early life stages of fish. Histol Histopathol. 2008;23:1525-39. 
  22. Guthrie KM, Rust MB, Langdon CJ, Barrows FT. Acceptability of various microparticulate diets to first-feeding walleye Stizostedion vitreum larvae. Aquac Nutr. 2000;6:153-8.  https://doi.org/10.1046/j.1365-2095.2000.00104.x
  23. Hamre K, Mollan TA, Saele O, Erstad B. Rotifers enriched with iodine and selenium increase survival in Atlantic cod (Gadus morhua) larvae. Aquaculture. 2008;284:190-5.  https://doi.org/10.1016/j.aquaculture.2008.07.052
  24. Hamre K, Yufera M, Ronnestad I, Boglione C, Conceicao LEC, Izquierdo M. Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Rev Aquac. 2013;5:S26-58.  https://doi.org/10.1111/j.1753-5131.2012.01086.x
  25. Hauville MR, Zambonino-Infante JL, Bell G, Migaud H, Main KL. Impacts of three different microdiets on Florida Pompano, Trachinotus carolinus, weaning success, growth, fatty acid incorporation and enzyme activity. Aquaculture. 2014;422-423:268-76.  https://doi.org/10.1016/j.aquaculture.2013.12.006
  26. Izquierdo M, Koven. Lipids. In: Joan Holt G, editor. Larval fish nutrition. Newark, NJ; John Wiley & Sons; 2011. 
  27. Izquierdo MS. Essential fatty acid requirements of cultured marine fish larvae. Aquac Nutr. 1996;2:183-91.  https://doi.org/10.1111/j.1365-2095.1996.tb00058.x
  28. Jobling M. Fish nutrition research: past, present and future. Aquac Int. 2016;24:767-86.  https://doi.org/10.1007/s10499-014-9875-2
  29. Kolkovski S. Digestive enzymes in fish larvae and juveniles-implications and applications to formulated diets. Aquaculture. 2001;200:181-201.  https://doi.org/10.1016/S0044-8486(01)00700-1
  30. Kolkovski S. Microdiets as alternatives to live feeds for fish larvae in aquaculture: improving the efficiency of feed particle utilization. In: Allan G, Burnell G, editors. Advances in aquaculture hatchery technology. Oxford: Woodhead; 2013. p. 203-22. 
  31. Kurmaly K, Jones DA, Yule AB. Acceptability and digestion of diets fed to larval stages of Homarus gammarus and the role of dietary conditioning behaviour. Mar Biol. 1990;106:181-90.  https://doi.org/10.1007/BF01314799
  32. Langdon C. Microparticle types for delivering nutrients to marine fish larvae. Aquaculture. 2003;227:259-75.  https://doi.org/10.1016/S0044-8486(03)00508-8
  33. Langdon C, Barrows R. Microparticulate diets: technology. In: Joan Holt G, editor. Larval fish nutrition. Newark, NJ: John Wiley & Sons; 2011. 
  34. Lazo JP, Darias MJ, Gisbert E. Ontogeny of the digestive tract. In: Joan Holt G, editor. Larval fish nutrition. Newark, NJ: John Wiley & Sons; 2011. 
  35. Liu B, Zhu X, Lei W, Yang Y, Han D, Jin J, et al. Effects of different weaning strategies on survival and growth in Chinese longsnout catfish (Leiocassis longirostris Gunther) larvae. Aquaculture. 2012;364-365:13-8.  https://doi.org/10.1016/j.aquaculture.2012.04.051
  36. Liu J, Caballero MJ, Izquierdo M, El-Sayed Ali T, Hernandez-Cruz CM, Valencia A, et al. Necessity of dietary lecithin and eicosapentaenoic acid for growth, survival, stress resistance and lipoprotein formation in gilthead sea bream Sparus aurata. Fish Sci. 2002;68:1165-72.  https://doi.org/10.1046/j.1444-2906.2002.00551.x
  37. Lund I, Steenfeldt SJ, Banta G, Hansen BW. The influence of dietary concentrations of arachidonic acid and eicosapentaenoic acid at various stages of larval ontogeny on eye migration, pigmentation and prostaglandin content of common sole larvae (Solea solea L.). Aquaculture. 2008;276:143-53.  https://doi.org/10.1016/j.aquaculture.2008.01.004
  38. Masoudi Asil S, Abedian Kenari A, Rahimi Miyanji G, Van Der Kraak G. The influence of dietary arachidonic acid on growth, reproductive performance, and fatty acid composition of ovary, egg and larvae in an anabantid model fish, blue gourami (Trichopodus trichopterus; Pallas, 1770). Aquaculture. 2017;476:8-18.  https://doi.org/10.1016/j.aquaculture.2017.03.048
  39. Montero D, Izquierdo M. Welfare and health of fish fed vegetable oils as alternative lipid sources to fish oil. In: Turchini GM, Ng WK, Tocher DR, editors. Fish oil replacement and alternative lipid sources in aquaculture feeds. Boca Raton, FL: CRC Press; 2011. 
  40. Nhu VC, Dierckens K, Nguyen HT, Hoang TMT, Le TL, Tran MT, et al. Effect of early co-feeding and different weaning diets on the performance of cobia (Rachycentron canadum) larvae and juveniles. Aquaculture. 2010;305:52-8.  https://doi.org/10.1016/j.aquaculture.2010.04.010
  41. Pedro Canavate JP, Fernandez-Diaz C. Influence of co-feeding ́ larvae with live and inert diets on weaning the sole Solea senegalensis onto commercial dry feeds. Aquaculture. 1999;174:255-63.  https://doi.org/10.1016/S0044-8486(99)00021-6
  42. People Le Ruyet J, Alexandre JC, Thebaud L, Mugnier C. Marine fish larvae feeding: formulated diets or live prey? J World Aquac Soc. 1993;24:211-24.  https://doi.org/10.1111/j.1749-7345.1993.tb00010.x
  43. Ronnestad I, Yufera M, Ueberschar B, Ribeiro L, Saele O, Boglione C. Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquac. 2013;5:S59-98.  https://doi.org/10.1111/raq.12010
  44. Samat NA, Yusoff FM, Rasdi NW, Karim M. Enhancement of live food nutritional status with essential nutrients for improving aquatic animal health: a review. Animals. 2020;10:2457. 
  45. Sargent J, McEvoy L, Estevez A, Bell G, Bell M, Henderson J, et al. Lipid nutrition of marine fish during early development : current status and future directions. Aquaculture. 1999;179:217-29.  https://doi.org/10.1016/S0044-8486(99)00191-X
  46. Theodorou JA. Total lipids content and fatty acids composition of the rotifer Brachionus plicatilis using artificial enrichments. J Hell Vet Med Soc. 2017;68:181-92.  https://doi.org/10.12681/jhvms.15604
  47. Thepot V, Mangott A, Pirozzi I. Rotifers enriched with a mixed algal diet promote survival, growth and development of barramundi larvae, Lates calcarifer (Bloch). Aquac Rep. 2016;3:147-58.  https://doi.org/10.1016/j.aqrep.2016.02.003
  48. Tredici MR, Biondi N, Ponis E, Rodolfi L, Chini Zittelli G. 20 - Advances in microalgal culture for aquaculture feed and other uses. In: Burnell G, Allan G, editors. New technologies in aquaculture: improving production efficiency, quality and environmental management. Boca Raton, FL: Woodhead; 2009. p. 610-76. 
  49. Vadstein O, Attramadal KJK, Bakke I, Olsen Y. K-selection as microbial community management strategy: a method for improved viability of larvae in aquaculture. Front Microbiol. 2018;9:2730. 
  50. Willer D, Aldridge DC. Microencapsulated diets to improve bivalve shellfish aquaculture. R Soc Open Sci. 2017;4:171142. 
  51. Wu FC, Ting YY, Chen HY. Docosahexaenoic acid is superior to eicosapentaenoic acid as the essential fatty acid for growth of grouper, Epinephelus malabaricus. J Nutr. 2002;132:72-9.  https://doi.org/10.1093/jn/132.1.72
  52. Yu JP, Hino A, Noguchi T, Wakabayashi H. Toxicity of Vibrio alginolyticus on the survival of the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi. 1990;56:1455-60. https://doi.org/10.2331/suisan.56.1455