DOI QR코드

DOI QR Code

Lauric acid reduces apoptosis by inhibiting FOXO3a-signaling in deoxynivalenol-treated IPEC-J2 cells

  • Na Yeon Kim (Department of Animal Science and Biotechnology, Kyungpook National University) ;
  • Sang In Lee (Department of Animal Science and Biotechnology, Kyungpook National University)
  • Received : 2023.06.01
  • Accepted : 2023.08.31
  • Published : 2024.09.30

Abstract

Deoxynivalenol (DON) is the most common mycotoxin contaminant of food or feed worldwide and causes disease in animals. Lauric acid (LA) is a medium-chain fatty acid useful for barrier functions such as antimicrobial activity in the intestine of monogastric animals. However, the molecular mechanisms by which lauric acid exerts its effects on the deoxynivalenol-exposed small intestine have not been studied. We used an intestinal porcine epithelial cell line (IPEC-J2) as an in vitro model to explore the molecular mechanism of lauric acid in alleviating deoxynivalenol-induced damage. We found that lauric acid reversed deoxynivalenol-induced reduction in cell viability. Our quantitative real-time polymerase chain reaction results indicated that lauric acid alleviated deoxynivalenol-induced apoptosis through Annexin-V. Additionally, immunofluorescence and Western blotting showed that lauric acid attenuated deoxynivalenol-induced forkhead box O3 (FOXO3a) translocation into the nucleus. These results suggest that lauric acid attenuates forkhead box O3 translocation in the small intestine damaged by deoxynivalenol, thereby reducing apoptosis. In conclusion, this study found that lauric acid alleviates deoxynivalenol-induced damage in intestinal porcine epithelial cell line through various molecular mechanisms.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2022R1I1A3070740).

References

  1. Yang H, Xiong X, Wang X, Tan B, Li T, Yin Y. Effects of weaning on intestinal upper villus epithelial cells of piglets. PLOS ONE. 2016;11:e0150216. https://doi.org/10.1371/journal.pone.0150216 
  2. Jang HJ, Lee SI. MicroRNA expression profiling during the suckling-to-weaning transition in pigs. J Anim Sci Technol. 2021;63:854-63. https://doi.org/10.5187/jast.2021.e69 
  3. Kang R, Li R, Dai P, Li Z, Li Y, Li C. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environ Pollut. 2019;251:689-98. https://doi.org/10.1016/j.envpol.2019.05.026 
  4. Yi H, Hu W, Chen S, Lu Z, Wang Y. Cathelicidin-WA improves intestinal epithelial barrier function and enhances host defense against enterohemorrhagic Escherichia coli O157:H7 infection. J Immunol. 2017;198:1696-705. https://doi.org/10.4049/jimmunol.1601221 
  5. Mun D, Kyoung H, Kong M, Ryu S, Jang KB, Baek J, et al. Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs. J Anim Sci Technol. 2021;63:1314-27. https://doi.org/10.5187/jast.2021.e109 
  6. Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol. 2012;12:503-16. https://doi.org/10.1038/nri3228 
  7. Ren Z, Guo C, Yu S, Zhu L, Wang Y, Hu H, et al. Progress in mycotoxins affecting intestinal mucosal barrier function. Int J Mol Sci. 2019;20:2777. https://doi.org/10.3390/ijms20112777 
  8. Gao Y, Meng L, Liu H, Wang J, Zheng N. The compromised intestinal barrier induced by mycotoxins. Toxins. 2020;12:619. https://doi.org/10.3390/toxins12100619 
  9. Zhang C, Zhang KF, Chen FJ, Chen YH, Yang X, Cai ZH, et al. Deoxynivalenol triggers porcine intestinal tight junction disorder: insights from mitochondrial dynamics and mitophagy. Ecotoxicol Environ Saf. 2022;248:114291. https://doi.org/10.1016/j.ecoenv.2022.114291 
  10. Liao S, Tang S, Tan B, Li J, Qi M, Cui Z, et al. Chloroquine improves deoxynivalenol-induced inflammatory response and intestinal mucosal damage in piglets. Oxid Med Cell Longev. 2020;2020:9834813. https://doi.org/10.1155/2020/9834813 
  11. Garcia GR, Payros D, Pinton P, Dogi CA, Laffitte J, Neves M, et al. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Arch Toxicol. 2018;92:983-93. https://doi.org/10.1007/s00204-017-2083-x 
  12. Wang S, Yang J, Zhang B, Wu K, Yang A, Li C, et al. Deoxynivalenol impairs porcine intestinal host defense peptide expression in weaned piglets and IPEC-J2 cells. Toxins. 2018;10:541. https://doi.org/10.3390/toxins10120541 
  13. Yao Y, Long M. The biological detoxification of deoxynivalenol: a review. Food Chem Toxicol. 2020;145:111649. https://doi.org/10.1016/j.fct.2020.111649 
  14. Colovic R, Puvaca N, Cheli F, Avantaggiato G, Greco D, Duragic O, et al. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins. 2019;11:617. https://doi.org/10.3390/toxins11110617 
  15. Hussein HS, Brasel JM. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology. 2001;167:101-34. https://doi.org/10.1016/S0300-483X(01)00471-1 
  16. Yang Y, Huang J, Li J, Yang H, Yin Y. The effects of lauric acid on IPEC-J2 cell differentiation, proliferation, and death. Curr Mol Med. 2020;20:572-81. https://doi.org/10.2174/1566524020666200128155115 
  17. Surendra KC, Tomberlin JK, van Huis A, Cammack JA, Heckmann LHL, Khanal SK. Rethinking organic wastes bioconversion: evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: stratiomyidae) (BSF). Waste Manag. 2020;117:58-80. https://doi.org/10.1016/j.wasman.2020.07.050 
  18. Jia M, Zhang Y, Gao Y, Ma X. Effects of medium chain fatty acids on intestinal health of monogastric animals. Curr Protein Pept Sci. 2020;21:777-84. https://doi.org/10.2174/1389203721666191231145901 
  19. Lauridsen C. Effects of dietary fatty acids on gut health and function of pigs pre- and post-weaning. J Anim Sci. 2020;98:skaa086. https://doi.org/10.1093/jas/skaa086 
  20. Jackman JA, Boyd RD, Elrod CC. Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation. J Anim Sci Biotechnol. 2020;11:44. https://doi.org/10.1186/s40104-020-00446-1 
  21. Zheng C, Chen Z, Yan X, Xiao G, Qiu T, Ou J, et al. Effects of a combination of lauric acid monoglyceride and cinnamaldehyde on growth performance, gut morphology, and gut microbiota of yellow-feathered broilers. Poult Sci. 2023;102:102825. https://doi.org/10.1016/j.psj.2023.102825 
  22. Vandenbroucke V, Croubels S, Martel A, Verbrugghe E, Goossens J, Van Deun K, et al. The mycotoxin deoxynivalenol potentiates intestinal inflammation by Salmonella typhimurium in porcine ileal loops. PLOS ONE. 2011;6:e23871. https://doi.org/10.1371/journal. pone.0023871 
  23. Chen J, Huang Z, Cao X, Chen X, Zou T, You J. Plant-derived polyphenols as Nrf2 activators to counteract oxidative stress and intestinal toxicity induced by deoxynivalenol in swine: an emerging research direction. Antioxidants. 2022;11:2379. https://doi.org/10.3390/antiox11122379 
  24. Yoon JW, Lee SI. Gene expression profiling after ochratoxin a treatment in small intestinal epithelial cells from pigs. J Anim Sci Technol. 2022;64:842-53. https://doi.org/10.5187/jast.2022.e49 
  25. Tang M, Yuan D, Liao P. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets. Environ Pollut. 2021;289:117865. https://doi.org/10.1016/j.envpol.2021.117865 
  26. Tham YY, Choo QC, Muhammad TST, Chew CH. Lauric acid alleviates insulin resistance by improving mitochondrial biogenesis in THP-1 macrophages. Mol Biol Rep. 2020;47:9595-607. https://doi.org/10.1007/s11033-020-06019-9 
  27. Wu Y, Zhang H, Zhang R, Cao G, Li Q, Zhang B, et al. Serum metabolome and gut microbiome alterations in broiler chickens supplemented with lauric acid. Poult Sci. 2021;100:101315. https://doi.org/10.1016/j.psj.2021.101315 
  28. Zeng X, Yang Y, Wang J, Wang Z, Li J, Yin Y, et al. Dietary butyrate, lauric acid and stearic acid improve gut morphology and epithelial cell turnover in weaned piglets. Anim Nutr. 2022;11:276-82. https://doi.org/10.1016/j.aninu.2022.07.012 
  29. Liu Z, Xie W, Zan G, Gao C, Yan H, Zhou J, et al. Lauric acid alleviates deoxynivalenol-induced intestinal stem cell damage by potentiating the Akt/mTORC1/S6K1 signaling axis. Chem Biol Interact. 2021;348:109640. https://doi.org/10.1016/j.cbi.2021.109640 
  30. Wang X, Zhang Y, Zhao J, Cao L, Zhu L, Huang Y, et al. Deoxynivalenol induces inflammatory injury in IPEC-J2 Cells via NF-κB signaling pathway. Toxins. 2019;11:733. https://doi.org/10.3390/toxins11120733 
  31. Xu X, Lai Y, Hua ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep. 2019;39:BSR20180992. https://doi.org/10.1042/BSR20180992 
  32. Negroni A, Cucchiara S, Stronati L. Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediators Inflamm. 2015;2015:250762. https://doi.org/10.1155/2015/250762 
  33. Kang TH, Kang KS, Lee SI. Deoxynivalenol induces apoptosis via FOXO3a-signaling pathway in small-intestinal cells in pig. Toxics. 2022;10:535. https://doi.org/10.3390/toxics10090535 
  34. Leard LE, Broaddus VC. Mesothelial cell proliferation and apoptosis. Respirology. 2004;9:292-9. https://doi.org/10.1111/j.1440-1843.2004.00602.x 
  35. Zhao W, Zhang X, Zhou Z, Sun B, Gu W, Liu J, et al. Liraglutide inhibits the proliferation and promotes the apoptosis of MCF-7 human breast cancer cells through downregulation of microRNA-27a expression. Mol Med Rep. 2018;17:5202-12. https://doi.org/10.3892/mmr.2018.8475 
  36. Hagenbuchner J, Ausserlechner MJ. Mitochondria and FOXO3: breath or die. Front Physiol. 2013;4:147. https://doi.org/10.3389/fphys.2013.00147 
  37. Melnik BC. Apoptosis may explain the pharmacological mode of action and adverse effects of isotretinoin, including teratogenicity. Acta Derm Venereol. 2017;97:173-81. https://doi.org/10.2340/00015555-2535 
  38. Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 2001;11:297-305. https://doi.org/10.1016/S0959-4388(00)00211-7 
  39. Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol. 2022;221:e202201159. https://doi.org/10.1083/jcb.202201159 
  40. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43-50. https://doi.org/10.1038/34112 
  41. Larsen BD, Sorensen CS. The caspase-activated DNase: apoptosis and beyond. FEBS J. 2017;284:1160-70. https://doi.org/10.1111/febs.13970 
  42. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta Mol Cell Res. 2013;1833:3448-59. https://doi.org/10.1016/j.bbamcr.2013.06.001 
  43. Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta Mol Cell Res. 2011;1813:1978-86. https://doi.org/10.1016/j.bbamcr.2011.03.010 
  44. Snoeks L, Weber CR, Turner JR, Bhattacharyya M, Wasland K, Savkovic SD. Tumor suppressor Foxo3a is involved in the regulation of lipopolysaccharide-induced interleukin-8 in intestinal HT-29 cells. Infect Immun. 2008;76:4677-85. https://doi.org/10.1128/IAI.00227-08