DOI QR코드

DOI QR Code

ON SOME REFINING INEQUALITIES VIA BEREZIN SYMBOLS

  • B. Gunturk (Department of Mechanical Engineering, Faculty of Engineering, Baskent University) ;
  • M. Gurdal (Department of Mathematics, Suleyman Demirel University)
  • Received : 2024.02.24
  • Accepted : 2024.05.23
  • Published : 2024.09.24

Abstract

In recent years, several inequalities have been established when comparing the features of the Berezin transform directly. We examine other inequities associated with them in this work. For the Berezin numbers of a reproducing kernel Hilbert space operator, we therefore derived a variety of upper estimates. A few uses for the outcomes are also provided.

Keywords

References

  1. N. Aronzjan, Theory of reproducing kernel, Trans. Amer. Math. Soc. 68 (1950), no. 3, 337-404.  https://doi.org/10.1090/S0002-9947-1950-0051437-7
  2. S. Axler and D. Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47 (1998), no. 2, 387-400.  https://doi.org/10.1512/iumj.1998.47.1407
  3. M. Bakherad, M. Hajmohamadi, R. Lashkaripour, and S. Sahoo, Some extensions of Berezin number inequalities on operators, Rocky Mountain J. Math. 51 (2021), no. 6, 1941-1951.  https://doi.org/10.1216/rmj.2021.51.1941
  4. H. Ba,saran, M. B. Huban, and M. Gurdal, Inequalities related to Berezin norm and Berezin number of operators, Bull. Math. Anal. Appl. 14 (2022), no. 2, 1-11. 
  5. H. Ba,saran and M. Gurdal, Berezin number inequalities via Young inequality, Honam J. Math. 43 (2021), no. 3, 523-537.  https://doi.org/10.5831/HMJ.2021.43.3.523
  6. F. A. Berezin, Covariant and contavariant symbols of operators, Math. USSR-Izv. 6 (1972), no. 5, 1117-1151.  https://doi.org/10.1070/IM1972v006n05ABEH001913
  7. R. Bhatia and F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308 (2000), no. 1-3, 203-211.  https://doi.org/10.1016/S0024-3795(00)00048-3
  8. P. Bhunia, A. Sen, and K. Paul, Development of the Berezin number inequalities, Acta Math. Sin. English Series 39 (2023), no. 7, 1219-1228.  https://doi.org/10.1007/s10114-023-2090-1
  9. M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz, Rend. Sem. Mat. Univ. Politech. Torino. 31 (1974), 405-409. 
  10. I. Chalendar, E. Fricain, M. Gurdal, and M. Karaev, Compactness and Berezin symbols, Acta Sci. Math. (Szeged) 78 (2012), no. 1, 315-329.  https://doi.org/10.1007/BF03651352
  11. S. S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math. 5 (2009), no. 18, 269-278.  https://doi.org/10.5644/SJM.05.2.10
  12. T. Furuta, A simplified proof of Heinz inequality and scrutiny of its equality, Proc. Amer. Math. Soc. 97 (1986), no. 4, 751-753.  https://doi.org/10.1090/S0002-9939-1986-0846001-3
  13. M. T. Garayev, M. Bakherad, and R. Tapdigoglu, The weighted and the Davis-Wielandt Berezin number, Oper. Matrices 17 (2023), no. 2, 469-484.  https://doi.org/10.7153/oam-2023-17-31
  14. M. Gurdal and H. Ba,saran, Advance refinements of Berezin number inequalities, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 72 (2023), no. 2, 386-396.  https://doi.org/10.31801/cfsuasmas.1160606
  15. M. Hajmohamadi, R. Lashkaripour, and M. Bakherad, Improvements of Berezin number inequalities, Linear Multilinear Algebra 68 (2020), no. 6, 1218-1229.  https://doi.org/10.1080/03081087.2018.1538310
  16. M. Hassani, M. E. Omidvar, and H. R. Moradi, New estimates on numerical radius and operator norm of Hilbert space operators, Tokyo J. Math. 44 (2021), no. 2, 439-449.  https://doi.org/10.3836/tjm/1502179337
  17. M. B. Huban, H. Ba,saran, and M. Gurdal, Some new inequalities via Berezin numbers, Turk. J. Math. Comput. Sci. 14 (2022), no. 1, 129-137.  https://doi.org/10.47000/tjmcs.1014841
  18. M. B. Huban, H. Basaran, and M. Gurdal, Berezin number inequalities via convex functions, Filomat 36 (2022), no. 7, 2333-2344.  https://doi.org/10.2298/FIL2207333H
  19. P. Jorgensen, Analysis and probability: wavelets, signals, factals, Springer-Verlag, New York, 2006. 
  20. M. T. Karaev, Reproducing kernels and Berzein symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory 7 (2013), 983-1018.  https://doi.org/10.1007/s11785-012-0232-z
  21. M. T. Karaev and R. Tapdigoglu, On some problems for reproducing kernel Hilbert space operators via the Berezin transform, Mediterranean J. Math. 19 (2022), Article number: 13. 
  22. M. A. S. Khorasani and Z. Heydarbeygi, Refining numerical radius inequalities of Hilbert space operators, Mat. Vesnik 75 (2023), no. 1, 50-57.  https://doi.org/10.57016/MV-mrhd2011
  23. F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005), no. 1, 73-80.  https://doi.org/10.4064/sm168-1-5
  24. V. I. Paulsen and M. Raghupati, An introduction to the theory of reproducing kernel Hilbert space, Cambridge Univ. Press, 2016. 
  25. J. Pecaric, T. Furuta, J. Micic Hot, and Y. Seo, Mond-Pecaric method in operator inequalities, Element, Zagreb, 2005. 
  26. S. Sahoo and M. Bakherad, Some extended Berezin number inequalities, Filomat 35 (2021), no. 6, 2043-2053.  https://doi.org/10.2298/FIL2106043S
  27. R. Tapdigoglu, New Berezin symbol inequalities for operators on the reproducing kernel Hilbert space, Oper. Matrices 15 (2021), no. 3, 1031-1043.  https://doi.org/10.7153/oam-2021-15-64
  28. U. Yamanci, M. T. Garayev, and C. C, elik, Hardy-Hilbert type inequality in reproducing kernel Hilbert space: its applications and related results, Linear Multilinear Algebra 67 (2019), no. 4, 830-842.  https://doi.org/10.1080/03081087.2018.1490688
  29. T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), no. 1, 83-89. https://doi.org/10.4064/sm178-1-5