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ON SOME REFINING INEQUALITIES VIA BEREZIN
SYMBOLS

B. GUNTURK AND M. GURDAL*

Abstract. In recent years, several inequalities have been established
when comparing the features of the Berezin transform directly. We ex-
amine other inequities associated with them in this work. For the Berezin
numbers of a reproducing kernel Hilbert space operator, we therefore de-
rived a variety of upper estimates. A few uses for the outcomes are also
provided.

1. Introduction

In the present article, we prove some upper estimates for the Berezin sym-
bols on a reproducing kernel Hilbert space operators. Recall that the repro-
ducing kernel Hilbert space (shortly RKHS) is the Hilbert space H = H(F) of
complex-valued functions on some set F such that the evaluation functionals
wo(f) = f(p), p € F, are continuous on H and for every p € F there exist a
function f, € H such that f,(p) # 0 or, equivalently, there is no py € F such
that f(po) = 0 for all f € H. Then by the Riesz representation theorem for
each p € F there exists a unique function k, € H, which is called the reproduc-
ing kernel of the space #, such that f(p) = (f, k,) for all f € H. The function
K, = H:ﬁ’ p € F, is called the normalized reproducing kernel of H. The pro-

totypical RKHSs are the Hardy space H?(D), the Bergman space L2 (D), the
Dirichlet space D?(D), where D = {z € C : |z] < 1} is the unit disc, and the
Fock space F(C). A detailed presentation of the theory of reproducing kernels
and RKHSs is given, for instance in Aronzajn [1]. Reproducing kernels play
important role in many branches of pure and applied mathematics including
frame theory, wavelets, signals, fractals theories (see for instance, Jorgensen’s
book [19] and its references).

Note that for a bounded linear operator X on H (i.e., for X € B(H) its
Berezin symbol X is defined on [ by (see Berezin [6])

R(p) = (XK (). Kp(2))p € F
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In other words, Berezin symbol X is the function on F defined by restriction
of the quadratic form (Xz,z) with x € H to the subset of all normalized
reproducing kernels of the unit sphere in H. It is clear from the Cauchy-
Schwarz inequality that X is the bounded function on f whose values lie in
the numerical range of the operator X. So, the Berezin number b(X) and the
Berezin set B(X) of operator X are defined respectively by

b(X) := sup X(p))

and
B(X) := Range ()N() ={X(p):peF}.

Note also that the numerical range and numerical radius of operator X is
defined respectively by

W(X):={(Xx,z):x € H(F) and ||z] =1}

and
w(X):= sup |[(Xz,x)|.
llzll=1
See [7, 11, 16, 22, 23, 24, 29] for further details on numerical radius. Clearly,
B(X) c W(X) and b(X) < w(X). For the relations between B(X) and W (X),
see for instance, [1, 18, 20] and references therein.

Moreover, the Berezin number of an operator X satisfies the following prop-
erties:

(i) b(X) = b(X™).

(ii) b(aX) = |a|b(X) for all a € C.

(iii) (X +Y) < b(X) +b(Y) for all X, Y € B(H).

Notice that, in general the Berezin number does not define a norm. However,
if H is a reproducing kernel Hilbert space of analytic functions (for instance
on the unit disc D), then b(-) defines a norm on B(H(ID)) (see [4, 8, 21]). The
Berezin symbol has been studied in detail for Toeplitz and Hankel operators
on Hardy and Bergman spaces. For example, the Berezin symbol T, on the
Toeplitz operator T, (¢ € L>(6D)) on (H?(D) coincides with harmonic exten-
sion @ of function ¢ into the unit disc D; in particular, if ¢ € H>*(D), i.e.,
if the symbol function ¢ is a bounded analytic function on D, then i(, = .
Also it is well known that the Toeplitz operator on the Bergman space LZ(D)
is compact if and only if its Berezin symbol ﬁp vanishes on the boundary 0D,
ie., if lim, .3 i, (p) =0 for all 3 € 9D (see [2]). A one more nice property of
the Berezin symbol is the following:

IfX = }7, then X =Y. Therefore, the Berezin symbol uniquely determines
the operator. The Berezin symbol, Berezin set and Berezin number have been
investigated by many authors over the years, a few of them are [3], [5], [10],
[15], [20], [26], [27])-



On some refining inequalities via Berezin symbols 475

For any operators X € B(H) we define the Berezin norm of X as follows

|| X5 := sup [ XK,
pEF

It is obvious that
(1) b(X) <[ X[ls < | X]]

Since span{k, : p € F} = H(F), it is elementary that || X||g = 0 iff X =
0. Then it is easy to see that ||X||g share the above properties (i)-(iii), and
therefore ||-||p is the norm in B(#). As improvements of inequality (1), Huban
et al. came up with the following upper bounds for Berezin radius:

1 1/2
@ ber (X) < 5 (X1, +[|1X[1/%)

see [17, Theorem 3.1]

For X € B(#H) its so-called Aluthge transform X is defined by X =
|X|% U |X\% , where |X| := (X*X)% and U is the partial isometry associated
with the polar decomposition X = U|X| and ker U = ker X. The generalized
Aluthge transform, denoted by X, is defined as X, = [X|*U |X|'™*,0 < ¢ < 1.
In particular, Xo = U*UU |X| = U|X| = X, X; = |[X|UU*U = |X|U and
X2 = [X|?U|X|* = X. Here |X|* is defined as U*U.

In [13, Corollary 1], Garayev et al. proved that b(X) < (HXHb —|—b()A())

Concerning the product of two operators, Huban et al. [18, Corollary 2.10]
has shown the following estimate of b(Y*X),

1
(3) b(Y*X) < 3 [[IxP+ 1P|

and

1
bE(YX) < 5 [ IX1" v

s 6> 1.

In this paper, we prove some upper bounded inequalities. Some new appli-
cations of obtained results are also presented.

2. Main results

In this part, we now present the first outcome.

Theorem 2.1. Let X € B(H) be a operator on the RKHS H = H(F).
Then for 0 < ¢ <1, we have

Ab(X) < [[1XPE 1P - (X 4 x)

‘b+H|X|2< +IX PO e X x|
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Proof. From the inequality (3), the operator parallelogram law and the tri-
angle inequality, we obtain

Ab(Y*X) < 2 H|X|2 + |Y|2Hb

- H\X +YP X - Y|2Hb

< o+ v+ e - v

b b

_ H\X|2 SV XY 4+ Y*XHb n H|X\2 SV - XY — Y*XHb .

And so,
Y X) < [1XP+ P+ XY - vx |

(4) +H|X|2+|Y|2—(X*Y+Y*X)Hb.

Let X = U |X| be the polar decomposition of X. On choosing X = |X|* and
Y = |X|'7° U* in the inequality (4), we deduce that

Ab(X) < [[1XPE 1P - (X + x)

b+H|X|2< FXPO9 4 X 4 X

g
and where the above inequality follows from the inequality in [7], i.e.,
Y2 =YY =U|X|"° |xX|' U = U | X)) U = | xp0e)
and completes the proof of the theorem. O
In this step, we set up an additional upper estimate.

Theorem 2.2. Let X € B(H) be a operator on the RKHS H(F ). Then,
for 0 < ¢ <1 and any mean o, we have
b) '

1 -
b(x) < 5 (|l + gx

o [l e

Proof. We obtain
(XK K)| = (U |X| Ko )| = [ (U1X]"5 X[ K K, )|
= |(1XF K, IXP UK )| < IXE K| 1% U |
and
(XK Kp)| = KU X| Ky K| = |(U1X]1X] K K, )|

1— * 1-— *
= [(1x1" £ X P UK, )| < [ 1X1 1 | 1T UK |
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from the Cauchy-Schwarz inequality. It follows from the first relation in the
above that by the AM-GM inequality

(XK K < X157 07K

= JUXI B X1 1) (XS 0k X 0

X" Ky Ky (UIXPO UK, K, )

QQ

=\

(X1 Ky Ky ) (1P K, K, )
(<|X|2§ >+ <|X*‘2(17§) KPﬂKP>>
XP PO K, )

and where the fourth inequality follows from the inequality in [12], i.e., for any
positive number g,

IN
| = DN =

IX*| = U |X[1U".

In a similar manner, we get

(XK Ko < 5 (1P 4+ 1X) K, K, )

<1
2
Now, we obtain
(XK, Kp)| = (XK, K,)| o (XK, K,)|
1 2 2 2 w12(1—
() Bt (15 ) )
and

sup (X1, £6)] < sup 5 (17079 4 301 16,8, ) o (17 4 13 P00) 1, ).

By combining the inequalities (2) and (3), using the homogeneity of o and the
monotonicity condition of the mean for positive values, we obtain
)

which desired inequality. O

1 2(1—¢) %26
< —
b(X) < 5 (||l + x| o

H|X|2§ + |X*|2(1*§)

The inequality
1
b2(X) < o ||iXPP + X

(see [17, Theorem 3.2]) is extended by the following theorem.
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Theorem 2.3. Let X € B(H) be a operator on the RKHS H(F ). Then,
for 0 < ¢ <1, we have

1 1—v v
0 < [ a-gpeP] T Jas o R e .
0
Proof. Utilizing the Holder-McCarthly inequality in [25, Theorem 1.4], the

logarithmic-geometric mean inequality and the weighted AM-GM mean in-
equality, one may write

2
(XK, )
1— * 1— *
< X & [[1X1 0 | [[ 161 £ | 0 K

_ \/<|X|2< KP,KP> <\X|2(1") K,, Kp>\/<U X209 U*K,,,K,,> <U X[* UK, Kp>
= SO 1 ) (1P B, ) (10 PO iy ) (P K I )
= \/ (X1 K, K, ) (1XP 7 K, KPW (IXPO9 Ky Ky (120 K K, )

< /01 <<|X‘2§ KPVKP> <|X*|2(17§) KP7KP>)1_U

((IXPO) Ky k) (1X71 Ko K, )) v
< [ ((per s (e ) )
(<|X|2 K,, Kp>1_< (IX1 K, Kp><>v dv
< / (s(IXP K, ) + (- ) (IX P K, i,))

(=9 (XK K, + < (IX P K, K,)) do

—/1<(<|X|2+<1—<> X))

0

1—v

(A= IXP 461X P) Ky K, ) do

< [ Jorr+a-gxer]
0

by following the same steps as in the proof of Theorem 2.2. Thus, we can get

1 1—v
sup (XK, 1,)° < sup [ ((SIXP o+ (1= 91X ) K, K, )
peF peF Jo

v
(1= 1X* +<1X* || do.

(A= IXP +<I1X77) Ky K, ) do
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and
1 1—wv v
e < [ a-gper| T fa-opee o]
0 b b
which desired inequality. O
The next result provides a refinement of the well-known inequality
1 9 2 1
bA(X) < ¢ [[IXP + x|+ 5b(x*
(X) < 3 [IXP 4+ 1x7E + 3bex)
(see [18, Corollary 2.11]). Buzano’s inequality [9] asserts that

6 el 1z < B g )]+ e o)

for any z,y,z € H .

Theorem 2.4. Let X € B(H) be a operator on the RKHS H(F ). Then we
have

2
0200 < ooy L+ e L (K2 0) - (KF )
-2 4 b 2pEl P P '

Proof. Let © = XK,, y=X"K, and z = K,, p € [, in the inequality (5).
Then, we obtain

(XK, K,)[*
((<X|2 KP,KP> <|X*|217<p,17<p>)1/2 ¥ |<X2KP7KP>|>

(X" XK, Kp) (XX KD+ [(X2K,, K,)|)

IA

= N =N =N =N = N =

/N N

(XK, XK,) (X", X*K)"? + ](XQKpr)])
(XK XKl + (XK, K, )|

(5 (IXE I+ XK 12 = (1, | 157K 1)2) + (XK, K,

(10 ) (00 06)) = (000 ) 7 (0 1)) )

1
+5 (X?K,, K,)|)

= (P k) = gt (6 s6t) = (0 161)) )

1
+ 5 [(XPKp, Kp)|

2
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Taking supremum over all p € F, we achieve our desired inequality

1 1 .
sup [(X K, K,)[* < sup = [(X2K,, K, )| +sup <<|X\2 b \2) Kp,Kp>
peEF peEF

pEF
Lo (P ) - (P )Y

and

1 1 , ) 1 — 1/2 —— 1/2\ 2
2(X) < =b(X? fHX P —Zf ( (1x ~ (x>
b(x) < b [l x| S (1 (o) XFw) )
which completes the proof. O

The following well-known the polarization identity for the inner product
(x,y) will be used in the sequel. Let X € B(H) and x,y € H. Then

3

L&
w0y =3 2" e+l

k=0

Theorem 2.5. Let X € B(H) be a operator on the RKHS H = H(F).
Then, for 0 < ¢ < 1, we have

1/2
4b(X) < (4p*(X) —|—2H\X|4(1_§) x| Bb(X)) .

B+4H|X‘2(1—§)+|X*|2§

Proof. We deduce that

H ((|X\2(1‘<) + |X*|2<) + (2Re (e“’x)))2

B

_ ’(|X|2“‘<> + \X*|2*’)2 +4 (Re (¢ X))”

+ (X074 1) (2Re (¢9)) + (2Re (X)) (X0 + x7 %)

o

2 .
S (|X|2(17§)+‘X*|2§) +4H(Re (ezGX))QH
B

| (1XPC 4 )

B

[\

+

—~

Re (X)) | +2 |(Re (7)) (1XP09 + 1 x )

s

IN

<|X|2(17<) + \X*|2<>2 4 H (Re (ewX))QHB 4 H|X|2(17<) n ‘X*Fg
B

<2 X [P0 42X

2¢ 2
5 |> + 4[Re (e X) [ + 4|12 e

B
-+ 4|Re (e X) [+ 4]

i0
5 HRe (e X)

<2l 4 e

HABA(X) +4 H X209 4 x>

LX),

i0

5 HRe (e X)
i0

5 HRe (e X)

Iy

I

[
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and

H (<|X|2(1—<) 4 |X*|2<) + (2Re (ewX)))z

B
e P

HABA(X) +4 H X209 4 xe >

b(X).

Let X = U |X]| be the polar decomposition of X. By employing the inequality
(6), we have

4Re(e”XK,,K,)
= 4Re (U |X| K, K,) = 4Re <ei9U X[ X Kp,Kp>

— 4Re <ei9 X' K, X U*Kp>

. 2 X 2
- (ew X1+ X U*) KpH - H (ew X X U*) KpH
i0 1—¢ S rr* 2 i0 1—¢ S 7k 2
<[ X1 X1 o) K| < [l X x|
_ (eiﬁ |X|1*§+|X|C U*) (eiﬁ |X|1*§+|X|C U*) ’B
= [[|X123=9 + U |X[* U* + 2Re (U |X|)HB
= 12379 4+ |x*1* + 2Re (¢*U |X|)HB
= [[|X 9 4 | X*|* + 2Re (eiex)HB
) 9 1/2
= [((IXPO=9 41X %) + (2Re (X)) )
B
A1) «ds 2 2(1—<) 26 1/2
< (2H|X| x|+ v (X)+4H\X| + X Bb(X)) .
Taking supremum over all p € F, we can obtain our desired inequality
1/2
4b(X) < (4b2(X)+2H\X|4<1—<> x| B+4H|X\2<1—<> x| Bb(X))
O

If we put ¢ = % in Theorem 2.5, then we reach the inequality
1/2
Aber(X) < (4ber®(X) + 2||X* + X+ 41X+ X g, ber(X))
er

Theorem 2.6. Let X € B(H) be a non-zero operator on the RKHS H =
H(F). Then we have

N e 2

b .
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Proof. Let p € F. Utilizing the Cauchy-Schwarz inequality and the arithmetic-
geometric mean inequality, we can write

(XK K)| = KU XK, K = [(IXFH XU X IX) K, K, )|

= [T A K )| = (R K X )

1/2
< & ((X PO Ky 16, ) (IX PV K, K, ))
1 —c -
< DR (0 K 1) + (XK K,))
1
= 3 (X + XY K, K, )

We deduce that

sup 2 |(X K, K,)| < sup (1P X PC) K, ) | X
PEF reF

which is equivalent to

Qb(X) S H|X‘2(1*C) +|X|2(§*1)Hb

and completes the proof of the theorem. O

For X € B(H), its the mumber & (X) is defined by ¢ (X) := inf { X (o) : p € F }

(see [28]), which is used to give the next result.

Theorem 2.7. Let X € B(H) be a operator on the RKHS H = H(F).
Then we have

(b (1xP + 1) +2(x2+ (X*)2>)1/2 <|IX + X7
Proof. We have

1/2 1/2
1 + X0 = [| o+ X7 = [ xR ) )

= (e e ) ) )
= (2 10 i) ( (62 00 1))

<
S )| o))
> (1) )] e e )

(x2+ (X)) (0)
(‘<(|X|2 + |X*|2) Kp,Kp>‘ +’5(X2 + (X*)Q))I/Q < 1X + X7

XP 4 X7 K K, )| +

and
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Taking supremum over all p € F, we can get our desired inequality

ap ({0 ) )2 07) " < 1

and
2 * (2 ~ 2 *\ 2 1/2 *
(b (1XP +1x7) +2 (X2 4+ (X)) 7 <X + X7,
which completes the proof. O
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