
Honam Mathematical J. 46 (2024), No. 3, pp. 473–484

https://doi.org/10.5831/HMJ.2024.46.3.473

ON SOME REFINING INEQUALITIES VIA BEREZIN

SYMBOLS

B. Güntürk and M. Gürdal∗

Abstract. In recent years, several inequalities have been established
when comparing the features of the Berezin transform directly. We ex-

amine other inequities associated with them in this work. For the Berezin

numbers of a reproducing kernel Hilbert space operator, we therefore de-
rived a variety of upper estimates. A few uses for the outcomes are also

provided.

1. Introduction

In the present article, we prove some upper estimates for the Berezin sym-
bols on a reproducing kernel Hilbert space operators. Recall that the repro-
ducing kernel Hilbert space (shortly RKHS) is the Hilbert space H = H(𭟋) of
complex-valued functions on some set 𭟋 such that the evaluation functionals
φρ(f) = f(ρ), ρ ∈ 𭟋, are continuous on H and for every ρ ∈ 𭟋 there exist a
function fρ ∈ H such that fρ(ρ) ̸= 0 or, equivalently, there is no ρ0 ∈ 𭟋 such
that f(ρ0) = 0 for all f ∈ H. Then by the Riesz representation theorem for
each ρ ∈ 𭟋 there exists a unique function kρ ∈ H, which is called the reproduc-
ing kernel of the space H, such that f(ρ) = ⟨f, kρ⟩ for all f ∈ H. The function

Kρ :=
kρ

||kρ|| , ρ ∈ 𭟋, is called the normalized reproducing kernel of H. The pro-

totypical RKHSs are the Hardy space H2(D), the Bergman space L2
a(D), the

Dirichlet space D2(D), where D = {z ∈ C : |z| < 1} is the unit disc, and the
Fock space F(C). A detailed presentation of the theory of reproducing kernels
and RKHSs is given, for instance in Aronzajn [1]. Reproducing kernels play
important role in many branches of pure and applied mathematics including
frame theory, wavelets, signals, fractals theories (see for instance, Jorgensen’s
book [19] and its references).

Note that for a bounded linear operator X on H (i.e., for X ∈ B(H) its

Berezin symbol X̃ is defined on 𭟋 by (see Berezin [6])

X̃(ρ) := ⟨XKρ(z),Kρ(z)⟩, ρ ∈ 𭟋.
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In other words, Berezin symbol X̃ is the function on 𭟋 defined by restriction
of the quadratic form ⟨Xx, x⟩ with x ∈ H to the subset of all normalized
reproducing kernels of the unit sphere in H. It is clear from the Cauchy-

Schwarz inequality that X̃ is the bounded function on 𭟋 whose values lie in
the numerical range of the operator X. So, the Berezin number b(X) and the
Berezin set B(X) of operator X are defined respectively by

b(X) := sup
ρ∈𭟋

∣∣∣X̃(ρ)
∣∣∣

and

B(X) := Range
(
X̃
)
= {X̃(ρ) : ρ ∈ 𭟋}.

Note also that the numerical range and numerical radius of operator X is
defined respectively by

W (X) := {⟨Xx, x⟩ : x ∈ H(𭟋) and ∥x∥ = 1}

and

w (X) := sup
∥x∥=1

|⟨Xx, x⟩| .

See [7, 11, 16, 22, 23, 24, 29] for further details on numerical radius. Clearly,
B(X) ⊂ W (X) and b(X) ≤ w(X). For the relations between B(X) and W (X),
see for instance, [1, 18, 20] and references therein.

Moreover, the Berezin number of an operator X satisfies the following prop-
erties:

(i) b(X) = b(X∗).

(ii) b(αX) = |α|b(X) for all α ∈ C.
(iii) b(X + Y ) ≤ b(X) + b(Y ) for all X,Y ∈ B(H).

Notice that, in general the Berezin number does not define a norm. However,
if H is a reproducing kernel Hilbert space of analytic functions (for instance
on the unit disc D), then b(·) defines a norm on B(H(D)) (see [4, 8, 21]). The
Berezin symbol has been studied in detail for Toeplitz and Hankel operators

on Hardy and Bergman spaces. For example, the Berezin symbol T̃φ on the
Toeplitz operator Tφ(φ ∈ L∞(δD)) on (H2(D) coincides with harmonic exten-
sion φ̃ of function φ into the unit disc D; in particular, if φ ∈ H∞(D), i.e.,
if the symbol function φ is a bounded analytic function on D, then T̃φ = φ.
Also it is well known that the Toeplitz operator on the Bergman space L2

a(D)
is compact if and only if its Berezin symbol T̃φ vanishes on the boundary ∂D,
i.e., if limρ→Z T̃φ(ρ) = 0 for all Z ∈ ∂D (see [2]). A one more nice property of
the Berezin symbol is the following:

If X̃ = Ỹ , then X = Y . Therefore, the Berezin symbol uniquely determines
the operator. The Berezin symbol, Berezin set and Berezin number have been
investigated by many authors over the years, a few of them are [3], [5], [10],
[15], [20], [26], [27]).
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For any operators X ∈ B(H) we define the Berezin norm of X as follows

||X||B := sup
ρ∈𭟋

||XKρ||.

It is obvious that

(1) b(X) ≤ ||X||B ≤ ||X||

Since span{kρ : ρ ∈ 𭟋} = H(𭟋), it is elementary that ||X||B = 0 iff X =
0. Then it is easy to see that ||X||B share the above properties (i)-(iii), and
therefore || · ||B is the norm in B(H). As improvements of inequality (1), Huban
et al. came up with the following upper bounds for Berezin radius:

(2) ber (X) ≤ 1

2

(
∥X∥b +

∥∥X2
∥∥1/2
b

)
see [17, Theorem 3.1]

For X ∈ B(H) its so-called Aluthge transform X̂ is defined by X̂ :=

|X|
1
2 U |X|

1
2 , where |X| := (X∗X)

1
2 and U is the partial isometry associated

with the polar decomposition X = U |X| and kerU = kerX. The generalized

Aluthge transform, denoted by X̂ς , is defined as X̂ς = |X|ς U |X|1−ς
, 0 ≤ ς ≤ 1.

In particular, X̂0 = U∗UU |X| = U |X| = X, X̂1 = |X|UU∗U = |X|U and

X̂1/2 = |X|
1
2 U |X|

1
2 = X̂. Here |X|0 is defined as U∗U .

In [13, Corollary 1], Garayev et al. proved that b(X) ≤ 1
2

(
∥X∥b + b(X̂)

)
.

Concerning the product of two operators, Huban et al. [18, Corollary 2.10]
has shown the following estimate of b(Y ∗X),

(3) b(Y ∗X) ≤ 1

2

∥∥∥|X|2 + |Y |2
∥∥∥
b

and

b2ς(Y ∗X) ≤ 1

2

∥∥∥|X|4ς + |Y |4ς
∥∥∥
b
, ς ≥ 1.

In this paper, we prove some upper bounded inequalities. Some new appli-
cations of obtained results are also presented.

2. Main results

In this part, we now present the first outcome.

Theorem 2.1. Let X ∈ B(H) be a operator on the RKHS H = H(𭟋).
Then for 0 ≤ ς ≤ 1, we have

4b(X) ≤
∥∥∥|X|2ς + |X∗|2(1−ς) − (X +X∗)

∥∥∥
b
+
∥∥∥|X|2ς + |X∗|2(1−ς)

+X +X∗
∥∥∥
b
.
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Proof. From the inequality (3), the operator parallelogram law and the tri-
angle inequality, we obtain

4b(Y ∗X) ≤ 2
∥∥∥|X|2 + |Y |2

∥∥∥
b

=
∥∥∥|X + Y |2 + |X − Y |2

∥∥∥
b

≤
∥∥∥|X + Y |2

∥∥∥
b
+
∥∥∥|X − Y |2

∥∥∥
b

=
∥∥∥|X|2 + |Y |2 +X∗Y + Y ∗X

∥∥∥
b
+
∥∥∥|X|2 + |Y |2 −X∗Y − Y ∗X

∥∥∥
b
.

And so,

4b(Y ∗X) ≤
∥∥∥|X|2 + |Y |2 +X∗Y + Y ∗X

∥∥∥
b

+
∥∥∥|X|2 + |Y |2 − (X∗Y + Y ∗X)

∥∥∥
b
.(4)

Let X = U |X| be the polar decomposition of X. On choosing X = |X|ς and

Y = |X|1−ς
U∗ in the inequality (4), we deduce that

4b(X) ≤
∥∥∥|X|2ς + |X∗|2(1−ς) − (X +X∗)

∥∥∥
b
+
∥∥∥|X|2ς + |X∗|2(1−ς)

+X +X∗
∥∥∥
b
.

and where the above inequality follows from the inequality in [7], i.e.,

|Y |2 = Y ∗Y = U |X|1−ς |X|1−ς
U∗ = U |X|2(1−ς)

U∗ = |X∗|2(1−ς)

and completes the proof of the theorem.

In this step, we set up an additional upper estimate.

Theorem 2.2. Let X ∈ B(H) be a operator on the RKHS H(𭟋). Then,
for 0 ≤ ς ≤ 1 and any mean σ, we have

b(X) ≤ 1

2

(∥∥∥|X|2(1−ς)
+ |X∗|2ς

∥∥∥
b
σ
∥∥∥|X|2ς + |X∗|2(1−ς)

∥∥∥
b

)
.

Proof. We obtain

|⟨XKρ,Kρ⟩| = |⟨U |X|Kρ,Kρ⟩| =
∣∣∣〈U |X|1−ς |X|ς Kρ,Kρ

〉∣∣∣
=
∣∣∣〈|X|ς Kρ, |X|1−ς

U∗Kρ

〉∣∣∣ ≤ ∥|X|ς Kρ∥
∥∥∥|X|1−ς

U∗Kρ

∥∥∥
and

|⟨XKρ,Kρ⟩| = |⟨U |X|Kρ,Kρ⟩| =
∣∣∣〈U |X|ς |X|1−ς

Kρ,Kρ

〉∣∣∣
=
∣∣∣〈|X|1−ς

Kρ, |X|ς U∗Kρ

〉∣∣∣ ≤ ∥∥∥|X|1−ς
Kρ

∥∥∥ ∥|X|ς U∗Kρ∥
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from the Cauchy-Schwarz inequality. It follows from the first relation in the
above that by the AM-GM inequality

|⟨XKρ,Kρ⟩| ≤ ∥|X|ς Kρ∥
∥∥∥|X|1−ς

U∗Kρ

∥∥∥
=

√
⟨|X|ς Kρ, |X|ς Kρ⟩

〈
|X|1−ς

U∗Kρ, |X|1−ς
U∗Kρ

〉
=

√〈
|X|2ς Kρ,Kρ

〉〈
U |X|2(1−ς)

U∗Kρ,Kρ

〉
=

√〈
|X|2ς Kρ,Kρ

〉〈
|X∗|2(1−ς)

Kρ,Kρ

〉
≤ 1

2

(〈
|X|2ς Kρ,Kρ

〉
+
〈
|X∗|2(1−ς)

Kρ,Kρ

〉)
=

1

2

〈(
|X|2ς + |X∗|2(1−ς)

)
Kρ,Kρ

〉
and where the fourth inequality follows from the inequality in [12], i.e., for any
positive number q,

|X∗|q = U |X|q U∗.

In a similar manner, we get

|⟨XKρ,Kρ⟩| ≤
1

2

〈(
|X|2(1−ς)

+ |X∗|2ς
)
Kρ,Kρ

〉
.

Now, we obtain

|⟨XKρ,Kρ⟩| = |⟨XKρ,Kρ⟩|σ |⟨XKρ,Kρ⟩|

≤ 1

2

〈(
|X|2(1−ς)

+ |X∗|2ς
)
Kρ,Kρ

〉
σ
〈(

|X|2ς + |X∗|2(1−ς)
)
Kρ,Kρ

〉
and

sup
ρ∈𭟋

|⟨XKρ,Kρ⟩| ≤ sup
ρ∈𭟋

1

2

〈(
|X|2(1−ς)

+ |X∗|2ς
)
Kρ,Kρ

〉
σ
〈(

|X|2ς + |X∗|2(1−ς)
)
Kρ,Kρ

〉
.

By combining the inequalities (2) and (3), using the homogeneity of σ and the
monotonicity condition of the mean for positive values, we obtain

b(X) ≤ 1

2

(∥∥∥|X|2(1−ς)
+ |X∗|2ς

∥∥∥
b
σ
∥∥∥|X|2ς + |X∗|2(1−ς)

∥∥∥
b

)
which desired inequality.

The inequality

b2(X) ≤ 1

2

∥∥∥|X|2 + |X∗|2
∥∥∥
b

(see [17, Theorem 3.2]) is extended by the following theorem.
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Theorem 2.3. Let X ∈ B(H) be a operator on the RKHS H(𭟋). Then,
for 0 ≤ ς ≤ 1, we have

b2(X) ≤
∫ 1

0

∥∥∥ς |X|2 + (1− ς) |X∗|2
∥∥∥1−v

b

∥∥∥(1− ς) |X|2 + ς |X∗|2
∥∥∥v
b
dv.

Proof. Utilizing the Hölder-McCarthly inequality in [25, Theorem 1.4], the
logarithmic-geometric mean inequality and the weighted AM-GM mean in-
equality, one may write

|⟨XKρ,Kρ⟩|2

≤ ∥|X|ς Kρ∥
∥∥∥|X|1−ς

U∗Kρ

∥∥∥∥∥∥|X|1−ς
Kρ

∥∥∥ ∥|X|ς U∗Kρ∥

=

√〈
|X|2ς Kρ,Kρ

〉〈
|X|2(1−ς)

Kρ,Kρ

〉√〈
U |X|2(1−ς)

U∗Kρ,Kρ

〉〈
U |X|2ς U∗Kρ,Kρ

〉
=

√〈
|X|2ς Kρ,Kρ

〉〈
|X|2(1−ς)

Kρ,Kρ

〉√〈
|X∗|2(1−ς)

Kρ,Kρ

〉〈
|X∗|2ς Kρ,Kρ

〉
=

√〈
|X|2ς Kρ,Kρ

〉〈
|X∗|2(1−ς)

Kρ,Kρ

〉√〈
|X|2(1−ς)

Kρ,Kρ

〉〈
|X∗|2ς Kρ,Kρ

〉
≤
∫ 1

0

(〈
|X|2ς Kρ,Kρ

〉〈
|X∗|2(1−ς)

Kρ,Kρ

〉)1−v

(〈
|X|2(1−ς)

Kρ,Kρ

〉〈
|X∗|2ς Kρ,Kρ

〉)v
dv

≤
∫ 1

0

(〈
|X|2 Kρ,Kρ

〉ς 〈
|X∗|2 Kρ,Kρ

〉1−ς
)1−v

(〈
|X|2 Kρ,Kρ

〉1−ς 〈
|X∗|2 Kρ,Kρ

〉ς)v

dv

≤
∫ 1

0

(
ς
〈
|X|2 Kρ,Kρ

〉
+ (1− ς)

〈
|X∗|2 Kρ,Kρ

〉)1−v

(
(1− ς)

〈
|X|2 Kρ,Kρ

〉
+ ς

〈
|X∗|2 Kρ,Kρ

〉)v
dv

=

∫ 1

0

〈(
ς |X|2 + (1− ς) |X∗|2

)
Kρ,Kρ

〉1−v

+
〈(

(1− ς) |X|2 + ς |X∗|2
)
Kρ,Kρ

〉v
dv

≤
∫ 1

0

∥∥∥ς |X|2 + (1− ς) |X∗|2
∥∥∥1−v ∥∥∥(1− ς) |X|2 + ς |X∗|2

∥∥∥v dv.
by following the same steps as in the proof of Theorem 2.2. Thus, we can get

sup
ρ∈𭟋

|⟨XKρ,Kρ⟩|2 ≤ sup
ρ∈𭟋

∫ 1

0

〈(
ς |X|2 + (1− ς) |X∗|2

)
Kρ,Kρ

〉1−v

+
〈(

(1− ς) |X|2 + ς |X∗|2
)
Kρ,Kρ

〉v
dv
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and

b2(X) ≤
∫ 1

0

∥∥∥ς |X|2 + (1− ς) |X∗|2
∥∥∥1−v

b

∥∥∥(1− ς) |X|2 + ς |X∗|2
∥∥∥v

b

dv

which desired inequality.

The next result provides a refinement of the well-known inequality

b2(X) ≤ 1

4

∥∥∥|X|2 + |X∗|2
∥∥∥
b
+

1

2
b(X2)

(see [18, Corollary 2.11]). Buzano’s inequality [9] asserts that

(5) |⟨z, x⟩| |⟨z, y⟩| ≤ ∥z∥2

2
(|⟨x, y⟩|+ ∥x∥ ∥y∥)

for any x, y, z ∈ H .

Theorem 2.4. Let X ∈ B(H) be a operator on the RKHS H(𭟋). Then we
have

b2(X) ≤ 1

2
b(X2)+

1

4

∥∥∥|X|2 + |X∗|2
∥∥∥
b
−1

2
inf
ρ∈𭟋

((
|̃X|2 (ρ)

)1/2

−
(
|̃X∗|2 (ρ)

)1/2
)2

.

Proof. Let x = XKρ, y = X∗Kρ and z = Kρ, ρ ∈ 𭟋, in the inequality (5).
Then, we obtain

|⟨XKρ,Kρ⟩|2

≤ 1

2

((〈
|X|2 Kρ,Kρ

〉〈
|X∗|2 Kρ,Kρ

〉)1/2
+
∣∣〈X2Kρ,Kρ

〉∣∣)
=

1

2

(
(⟨X∗XKρ,Kρ⟩ ⟨XX∗,Kρ⟩)1/2 +

∣∣〈X2Kρ,Kρ

〉∣∣)
=

1

2

(
(⟨XKρ, XKρ⟩ ⟨X∗, X∗Kρ⟩)1/2 +

∣∣〈X2Kρ,Kρ

〉∣∣)
=

1

2
(∥XKρ∥ ∥X∗Kρ∥) +

∣∣〈X2Kρ,Kρ

〉∣∣
=

1

2
(
1

2

(
∥XKρ∥2 + ∥X∗Kρ∥2 − (∥XKρ∥ − ∥X∗Kρ∥)2

)
+
∣∣〈X2Kρ,Kρ

〉∣∣)
=

1

4

(〈
|X|2 Kρ,Kρ

〉
+
〈
|X∗|2 Kρ,Kρ

〉)
− 1

2

((〈
|X|2 Kρ,Kρ

〉)1/2
−
(〈

|X∗|2 Kρ,Kρ

〉)1/2)2

+
1

2

∣∣〈X2Kρ,Kρ

〉∣∣)
=

1

4

〈(
|X|2 + |X∗|2

)
Kρ,Kρ

〉
− 1

2
inf
ρ∈𭟋

((〈
|X|2 Kρ,Kρ

〉)1/2
−
(〈

|X∗|2 Kρ,Kρ

〉)1/2)2

+
1

2

∣∣〈X2Kρ,Kρ

〉∣∣ .
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Taking supremum over all ρ ∈ 𭟋, we achieve our desired inequality

sup
ρ∈𭟋

|⟨XKρ,Kρ⟩|2 ≤ sup
ρ∈𭟋

1

2

∣∣〈X2Kρ,Kρ

〉∣∣+ sup
ρ∈𭟋

1

4

〈(
|X|2 + |X∗|2

)
Kρ,Kρ

〉
− 1

2
inf
ρ∈𭟋

((〈
|X|2 Kρ,Kρ

〉)1/2
−
(〈

|X∗|2 Kρ,Kρ

〉)1/2)2

and

b2(X) ≤ 1

2
b(X2)+

1

4

∥∥∥|X|2 + |X∗|2
∥∥∥
ber

−1

2
inf
ρ∈𭟋

((
|̃X|2 (ρ)

)1/2

−
(
|̃X∗|2 (ρ)

)1/2
)2

,

which completes the proof.

The following well-known the polarization identity for the inner product
⟨x, y⟩ will be used in the sequel. Let X ∈ B(H) and x, y ∈ H. Then

⟨x, y⟩ = 1

4

3∑
k=0

ik
∥∥x+ iky

∥∥2 .
Theorem 2.5. Let X ∈ B(H) be a operator on the RKHS H = H(𭟋).

Then, for 0 ≤ ς ≤ 1, we have

4b(X) ≤
(
4b2(X) + 2

∥∥∥|X|4(1−ς)
+ |X∗|4ς

∥∥∥
B
+ 4

∥∥∥|X|2(1−ς)
+ |X∗|2ς

∥∥∥
B
b(X)

)1/2
.

Proof. We deduce that∥∥∥∥((|X|2(1−ς)
+ |X∗|2ς

)
+
(
2Re

(
eiθX

)))2∥∥∥∥
B

=

∥∥∥∥(|X|2(1−ς)
+ |X∗|2ς

)2
+ 4

(
Re
(
eiθX

))2
+
(
|X|2(1−ς)

+ |X∗|2ς
) (

2Re
(
eiθX

))
+
(
2Re

(
eiθX

)) (
|X|2(1−ς)

+ |X∗|2ς
)∥∥∥

B

≤
∥∥∥∥(|X|2(1−ς)

+ |X∗|2ς
)2∥∥∥∥

B

+ 4
∥∥∥(Re (eiθX))2∥∥∥

B

+ 2
∥∥∥(|X|2(1−ς)

+ |X∗|2ς
) (

Re
(
eiθX

))∥∥∥
B
+ 2

∥∥∥(Re (eiθX)) (|X|2(1−ς)
+ |X∗|2ς

)∥∥∥
B

≤
∥∥∥∥(|X|2(1−ς)

+ |X∗|2ς
)2∥∥∥∥

B

+ 4
∥∥∥(Re (eiθX))2∥∥∥

B
+ 4

∥∥∥|X|2(1−ς)
+ |X∗|2ς

∥∥∥
B

∥∥Re (eiθX)∥∥
B

=

∥∥∥∥∥∥
(
2 |X|2(1−ς)

+ 2 |X∗|2ς

2

)2
∥∥∥∥∥∥
B

+ 4
∥∥Re (eiθX)∥∥2

B
+ 4

∥∥∥|X|2(1−ς)
+ |X∗|2ς

∥∥∥
B

∥∥Re (eiθX)∥∥
B

≤ 2
∥∥∥|X|4(1−ς)

+ |X∗|4ς
∥∥∥
B
+ 4

∥∥Re (eiθX)∥∥2
B
+ 4

∥∥∥|X|2(1−ς)
+ |X∗|2ς

∥∥∥
B

∥∥Re (eiθX)∥∥
B

≤ 2
∥∥∥|X|4(1−ς)

+ |X∗|4ς
∥∥∥
B
+ 4b2(X) + 4

∥∥∥|X|2(1−ς)
+ |X∗|2ς

∥∥∥
B
b(X),
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and ∥∥∥∥((|X|2(1−ς)
+ |X∗|2ς

)
+
(
2Re

(
eiθX

)))2∥∥∥∥
B

≤ 2
∥∥∥|X|4(1−ς)

+ |X∗|4ς
∥∥∥
B
+ 4b2(X) + 4

∥∥∥|X|2(1−ς)
+ |X∗|2ς

∥∥∥
B
b(X).(6)

Let X = U |X| be the polar decomposition of X. By employing the inequality
(6), we have

4Re
〈
eiθXKρ,Kρ

〉
= 4Re

〈
eiθU |X|Kρ,Kρ

〉
= 4Re

〈
eiθU |X|ς |X|1−ς

Kρ,Kρ

〉
= 4Re

〈
eiθ |X|1−ς

Kρ, |X|ς U∗Kρ

〉
=
∥∥∥(eiθ |X|1−ς

+ |X|ς U∗
)
Kρ

∥∥∥2 − ∥∥∥(eiθ |X|1−ς − |X|ς U∗
)
Kρ

∥∥∥2
≤
∥∥∥(eiθ |X|1−ς

+ |X|ς U∗
)
Kρ

∥∥∥2 ≤
∥∥∥eiθ |X|1−ς

+ |X|ς U∗
∥∥∥2
B

=
∥∥∥(eiθ |X|1−ς

+ |X|ς U∗
)∗ (

eiθ |X|1−ς
+ |X|ς U∗

)∥∥∥
B

=
∥∥∥|X|2(1−ς)

+ U |X|2ς U∗ + 2Re
(
eiθU |X|

)∥∥∥
B

=
∥∥∥|X|2(1−ς)

+ |X∗|2ς + 2Re
(
eiθU |X|

)∥∥∥
B

=
∥∥∥|X|2(1−ς)

+ |X∗|2ς + 2Re
(
eiθX

)∥∥∥
B

=

∥∥∥∥((|X|2(1−ς)
+ |X∗|2ς

)
+
(
2Re

(
eiθX

)))2∥∥∥∥1/2
B

.

≤
(
2
∥∥∥|X|4(1−ς)

+ |X∗|4ς
∥∥∥
B
+ 4b2(X) + 4

∥∥∥|X|2(1−ς)
+ |X∗|2ς

∥∥∥
B
b(X)

)1/2
.

Taking supremum over all ρ ∈ 𭟋, we can obtain our desired inequality

4b(X) ≤
(
4b2(X) + 2

∥∥∥|X|4(1−ς)
+ |X∗|4ς

∥∥∥
B
+ 4

∥∥∥|X|2(1−ς)
+ |X∗|2ς

∥∥∥
B
b(X)

)1/2
.

If we put ς = 1
2 in Theorem 2.5, then we reach the inequality

4ber(X) ≤
(
4ber2(X) + 2

∥∥∥|X|2 + |X∗|2
∥∥∥
Ber

+ 4 ∥|X|+ |X∗|∥Ber ber(X)
)1/2

.

Theorem 2.6. Let X ∈ B(H) be a non-zero operator on the RKHS H =
H(𭟋). Then we have

2b(X) ≤
∥∥∥|X|2(1−ς)

+ |X|2(ς−1)
∥∥∥
b

∥∥∥X̂ς

∥∥∥
b
.
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Proof. Let ρ ∈ 𭟋. Utilizing the Cauchy-Schwarz inequality and the arithmetic-
geometric mean inequality, we can write

|⟨XKρ,Kρ⟩| = |⟨U |X|Kρ,Kρ⟩| =
∣∣∣〈|X|ς−1 |X|1−ς

U |X|ς |X|1−ς
Kρ,Kρ

〉∣∣∣
=
∣∣∣〈|X|ς−1

Ãς |X|1−ς
Kρ,Kρ

〉∣∣∣ = ∣∣∣〈X̂ς |X|1−ς
Kρ, |X|ς−1

Kρ

〉∣∣∣
≤
∥∥∥X̂ς

∥∥∥(〈|X|2(1−ς)
Kρ,Kρ

〉〈
|X|2(ς−1)

Kρ,Kρ

〉)1/2
≤ 1

2

∥∥∥X̂ς

∥∥∥(〈|X|2(1−ς)
Kρ,Kρ

〉
+
〈
|X|2(ς−1)

Kρ,Kρ

〉)
=

1

2

〈(
|X|2(1−ς)

+ |X|2(ς−1)
)
Kρ,Kρ

〉∥∥∥X̂ς

∥∥∥ .
We deduce that

sup
ρ∈𭟋

2 |⟨XKρ,Kρ⟩| ≤ sup
ρ∈𭟋

〈(
|X|2(1−ς)

+ |X|2(ς−1)
)
Kρ,Kρ

〉∥∥∥X̂ς

∥∥∥
which is equivalent to

2b(X) ≤
∥∥∥|X|2(1−ς)

+ |X|2(ς−1)
∥∥∥
b

∥∥∥X̂ς

∥∥∥
and completes the proof of the theorem.

ForX ∈ B(H), its the number c̃ (X) is defined by c̃ (X) := inf
{
X̃ (ρ) : ρ ∈ 𭟋

}
(see [28]), which is used to give the next result.

Theorem 2.7. Let X ∈ B(H) be a operator on the RKHS H = H(𭟋).
Then we have(

b
(
|X|2 + |X∗|2

)
+ c̃

(
X2 + (X∗)

2
))1/2

≤ ∥X +X∗∥ .

Proof. We have

∥X +X∗∥ =
∥∥∥(X +X∗)

2
∥∥∥1/2 =

∥∥∥X2 + |X∗|2 + |X|2 + (X∗)
2
∥∥∥1/2

≥
(∣∣∣〈(X2 + |X∗|2 + |X|2 + (X∗)

2
)
Kρ,Kρ

〉∣∣∣)1/2
=
(∣∣∣〈(|X|2 + |X∗|2

)
Kρ,Kρ

〉
+
〈(

X2 + (X∗)
2
)
Kρ,Kρ

〉∣∣∣)1/2
=

(∣∣∣〈(|X|2 + |X∗|2
)
Kρ,Kρ

〉∣∣∣+ ∣∣∣∣∣ ˜(
X2 + (X∗)

2
)
(ρ)

∣∣∣∣∣
)1/2

≥

(∣∣∣〈(|X|2 + |X∗|2
)
Kρ,Kρ

〉∣∣∣+ inf
ρ∈𭟋

∣∣∣∣∣ ˜(
X2 + (X∗)

2
)
(ρ)

∣∣∣∣∣
)1/2

and (∣∣∣〈(|X|2 + |X∗|2
)
Kρ,Kρ

〉∣∣∣+ c̃
(
X2 + (X∗)

2
))1/2

≤ ∥X +X∗∥ .
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Taking supremum over all ρ ∈ 𭟋, we can get our desired inequality

sup
ρ∈𭟋

(∣∣∣〈(|X|2 + |X∗|2
)
Kρ,Kρ

〉∣∣∣+ c̃
(
X2 + (X∗)

2
))1/2

≤ ∥X +X∗∥

and (
b
(
|X|2 + |X∗|2

)
+ c̃

(
X2 + (X∗)

2
))1/2

≤ ∥X +X∗∥ ,

which completes the proof.
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[5] H. Başaran and M. Gürdal, Berezin number inequalities via Young inequality, Honam

J. Math. 43 (2021), no. 3, 523–537.
[6] F. A. Berezin, Covariant and contavariant symbols of operators, Math. USSR-Izv. 6

(1972), no. 5, 1117–1151.

[7] R. Bhatia and F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities,
Linear Algebra Appl. 308 (2000), no. 1–3, 203–211.

[8] P. Bhunia, A. Sen, and K. Paul, Development of the Berezin number inequalities, Acta

Math. Sin. English Series 39 (2023), no. 7, 1219–1228.
[9] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz, Rend. Sem.

Mat. Univ. Politech. Torino. 31 (1974), 405–409.
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[17] M. B. Huban, H. Başaran, and M. Gürdal, Some new inequalities via Berezin numbers,

Turk. J. Math. Comput. Sci. 14 (2022), no. 1, 129–137.
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32260, Isparta, Turkey.
E-mail: gurdalmehmet@sdu.edu.tr




