DOI QR코드

DOI QR Code

I-CONVERGENCE OF DOUBLE SEQUENCES IN NEUTROSOPHIC 2-NORMED SPACES

  • Nesar Hossain (Department of Mathematics, The University of Burdwan)
  • Received : 2023.09.11
  • Accepted : 2024.04.25
  • Published : 2024.09.24

Abstract

In this paper, we study the notion of I-convergence of double sequences in neutrosophic 2-normed spaces which is more generalized version of statistical convergence of double sequences. Also we define I2-Cauchy sequence and discuss on I2-completeness with regards to neutrosophic 2-norm.

Keywords

Acknowledgement

We express a great sense of gratitude and deep respect to the referees and reviewers for their valuable comments which improved the quality of this research article. Also, the author is grateful to The Council of Scientific and Industrial Research (CSIR), HRDG, India, for the award of Senior Research Fellow during the preparation of this paper.

References

  1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  2. K. T. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst. 31 (1989), no. 3, 343-349. https://doi.org/10.1016/0165-0114(89)90205-4
  3. A. K. Banerjee and N. Hossain, On I-convergence of sequences of functions and uniform conjugacy, J. Math. Anal. 13 (2022), no. 5, 12-20.
  4. A. K. Banerjee and N. Hossain, A study on I-localized sequences in S-metric spaces, Commun. Math. Appl. 14 (2023), no. 1, 49-58. https://doi.org/10.26713/cma.v14i1.2056
  5. L. C. Barros, R. C. Bassanezi, and P. A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Modell. 128 (2000), no. 1, 27-33. https://doi.org/10.1016/S0304-3800(99)00223-9
  6. F. Basar, Summability Theory and its Applications, 2nd ed., CRC Press/Taylor & Francis Group, Boca Raton.London.New York, 2022.
  7. F. Basar and M. Yesilkayagil Savasci, Double sequence spaces and four dimensional matrices, CRC Press/Taylor & Francis Group, Monographs and Research Notes in Mathematics, Boca Raton.London.New York, 2022.
  8. C. Belen and S. A. Mohiuddine, Generalized weighted statistical convergence and application, Appl. Math. Comput. 219 (2013), no. 18, 9821-9826.
  9. T. Bera and N. K. Mahapatra, On neutrosophic soft linear spaces, Fuzzy Inf. Eng. 9 (2017), no. 3, 299-324. https://doi.org/10.1016/j.fiae.2017.09.004
  10. T. Bera and N. K. Mahapatra, Neutrosophic soft normed linear space, Neutrosophic Sets and Systems. 23 (2018), 52-71.
  11. H. Bustince and P. Burillo, Vague sets are intuitionistic fuzzy sets, Fuzzy Sets Syst. 79 (1996), no. 3, 403-405. https://doi.org/10.1016/0165-0114(95)00154-9
  12. J. Christopher, The asymptotic density of some K-dimensional sets, Amer. Math. Monthly. 63 (1956), 399-401.
  13. P. Das, P. Kostyrko, W. Wilczynski and P. Malik, I and I*-convergence of double sequences, Math. Slovaca. 58 (2008), no. 5, 605-620. https://doi.org/10.2478/s12175-008-0096-x
  14. S. Debnath, S. Debnath, and C. Choudhury, On deferred statistical convergence of sequences in neutrosophic normed spaces, Sahand Commun. Math. Anal. 19 (2022), no. 4, 81-96.
  15. E. Dundar and Y. Sever, I2-Cauchy double sequences in 2-normed spaces, Glob. J. Math. Anal. 3 (2015), no. 1, 1-7.
  16. E. Dundar, M. R. Turkmen, and N. P. Akin, Regularly ideal convergence of double sequences in fuzzy normed spaces, Bull. Math. Anal. Appl. 12 (2020), no. 2, 12-26.
  17. A. Esi and B. Hazarika, λ-ideal convergence in intuitionistic fuzzy 2-normed linear space, J. Intell. Fuzzy Syst. 24 (2013), no. 4, 725-732. https://doi.org/10.3233/IFS-2012-0592
  18. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), no. 3-4, 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
  19. A. L. Fradkov and R. J. Evans, Control of chaos: Methods and applications in engineering, Annu. Rev. Control. 29 (2005), no. 1, 33-56. https://doi.org/10.1016/j.arcontrol.2005.01.001
  20. R. W. Freese and Y. J. Cho, Geometry of linear 2-normed spaces, Nova Publishers, Huntington, 2001.
  21. S. Gahler, 2-normed spaces, Math. Nachr. 28 (1964), 1-43. https://doi.org/10.1002/mana.19640280102
  22. R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets Syst. 4 (1980), no. 3, 221-234. https://doi.org/10.1016/0165-0114(80)90012-3
  23. C. Granados and A. Dhital, Statistical convergence of double sequences in neutrosophic normed spaces, Neutrosophic Sets and Systems. 42 (2021), 333-344.
  24. A. C. Guler, I-convergence in fuzzy cone normed spaces, Sahand Commun. Math. Anal. 18 (2021), no. 4, 45-57.
  25. H. Gunawan and Mashadi, On finite dimensional 2-normed spaces, Soochow. J. Math. 27 (2001), no. 3, 321-329.
  26. M. Gurdal and S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai. J. Math. 2 (2004), no. 1, 107-113.
  27. M. Gurdal and M. B. Huban, On I-convergence of double sequences in the topology induced by random 2-norms, Mat. Vesnik. 66 (2014), no. 1, 73-83.
  28. K. S. Ha, Y. J. Cho, S. S. Kim, and M. S. Khan, Strictly convex linear 2-normed spaces, Math. Nachr. 146 (1990), no. 1, 7-16. https://doi.org/10.1002/mana.19901460102
  29. B. Hazarika, On ideal convergent sequences in fuzzy normed linear spaces, Afr. Mat. 25 (2014), no. 4, 987-999. https://doi.org/10.1007/s13370-013-0168-0
  30. B. Hazarika, A. Alotaibi and S. A. Mohiuddine, Statistical convergence in measure for double sequences of fuzzy-valued functions, Soft Comput. 24 (2020), 6613-6622. https://doi.org/10.1007/s00500-020-04805-y
  31. L. Hong and J. Q. Sun, Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 11 (2006), no. 1, 1-12. https://doi.org/10.1016/j.cnsns.2004.11.001
  32. N. Hossain and A. K. Banerjee, Rough I-convergence in intuitionistic fuzzy normed spaces, Bull. Math. Anal. Appl. 14 (2022), no. 4, 1-10.
  33. U. Kadak and S. A. Mohiuddine, Generalized statistically almost convergence based on the difference operator which includes the (p; q)-gamma function and related approximation theorems, Results Math. 73 (2018), no .9.
  34. V. A. Khan, M. D. Khan, and M. Ahmad, Some new type of lacunary statistically convergent sequences in neutrosophic normed space, Neutrosophic Sets and Systems. 42 (2021), 241-252.
  35. M. Kirisci and N. Simsek, Neutrosophic normed spaces and statistical convergence, J. Anal. 28 (2020), 1059-1073. https://doi.org/10.1007/s41478-020-00234-0
  36. O. Kisi, Ideal convergence of sequences in neutrosophic normed spaces, J. Intell. Fuzzy Syst. 41 (2021), no. 2, 2581-2590.
  37. O. Kisi, Convergence methods for double Sequences and applications in neutrosophic normed spaces, Soft Computing Techniques in Engineering, Health, Mathematical and Social Sciences, 137-154. CRC Press, 2021.
  38. E. P. Klement, R. Mesiar, and E. Pap, Triangular norms. Position paper I: basic analytical and algebraic properties, Fuzzy Sets Syst. 143 (2004), 5-26. https://doi.org/10.1016/j.fss.2003.06.007
  39. P. Kostyrko, T. Salat, and W. Wilczynski, I-convergence, Real Anal. Exchange. 26 (2000/01), no. 2, 669-685. https://doi.org/10.2307/44154069
  40. J. Madore, Fuzzy physics, Ann. Physics, 219 (1992), no. 1, 187-198. https://doi.org/10.1016/0003-4916(92)90316-E
  41. S. A. Mohiuddine, A. Alotaibi, and S. M. Alsulami, Ideal convergence of double sequences in random 2-normed spaces, Adv. Difference Equ. 149 (2012), 1-8.
  42. S. A. Mohiuddine, B. Hazarika, and M. A. Alghamdi, Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat, 33 (2019), no. 14, 4549-4560. https://doi.org/10.2298/FIL1914549M
  43. S. A. Mohiuddine and B. A. S. Alamri, Generalization of equi statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 113 (2019), no. 3, 1955-1973. https://doi.org/10.1007/s13398-018-0591-z
  44. S. A. Mohiuddine, A. Asiri, and B. Hazarika, Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst. 48 (2019), no. 5, 492-506. https://doi.org/10.1080/03081079.2019.1608985
  45. R. Mondal and N. Hossain, Statistical convergence of double sequences in neutrosophic 2-normed spaces, communicated.
  46. M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), no. 1, 223-231. https://doi.org/10.1016/j.jmaa.2003.08.004
  47. M. Mursaleen, S. A. Mohiuddine, and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl. 59 (2010), no. 2, 603-611. https://doi.org/10.1016/j.camwa.2009.11.002
  48. M. Mursaleen and A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca, 61 (2011), no. 6, 933-940. https://doi.org/10.2478/s12175-011-0059-5
  49. S. Murtaza, A. Sharma, and V. Kumar, Neutrosophic 2-normed spaces and generalized summability, Neutrosophic Sets Syst. 55 (2023), no. 1, Article 25.
  50. M. H. M. Rashid and L. D. R. Kocinac, Ideal convergence in 2-fuzzy 2-normed spaces, Hacet. J. Math. Stat. 46 (2017), no. 1, 149-162.
  51. R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006), no. 2, 331-344. https://doi.org/10.1016/j.chaos.2005.03.019
  52. A. Sahiner, M. Gurdal, S. Saltan, and H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11 (2007), no. 5, 1477-1484.
  53. S. Sarabadan and S. Talebi, On I-convergence of double sequences in 2-normed spaces, Int. J. Contemp. Math. Sciences 7 (2012), no. 14, 673-684.
  54. E. Savas and M. Gurdal, Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst. 27 (2014), no. 4, 1621-1629. https://doi.org/10.3233/IFS-141128
  55. I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), no. 5, 361-375. https://doi.org/10.1080/00029890.1959.11989303
  56. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), no. 1, 313-334. https://doi.org/10.2140/pjm.1960.10.313
  57. F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure. Appl. Math. 24 (2005), 287-297.
  58. H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), no. 1, 73-74. https://doi.org/10.4064/cm-2-2-98-108
  59. B. Tripathy and B. C. Tripathy, On I-convergent double sequences, Soochow J. Math. 31 (2005), no. 4, 549-560.
  60. I. B. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy sets and systems 20 (1986), no. 2, 191-210. https://doi.org/10.1016/0165-0114(86)90077-1
  61. L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X