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I -CONVERGENCE OF DOUBLE SEQUENCES IN

NEUTROSOPHIC 2-NORMED SPACES

Nesar Hossain

Abstract. In this paper, we study the notion of I -convergence of dou-

ble sequences in neutrosophic 2-normed spaces which is more generalized
version of statistical convergence of double sequences. Also we define I2-

Cauchy sequence and discuss on I2-completeness with regards to neutro-

sophic 2-norm.

1. Introduction

As a generalization of ordinary convergence of sequences of real numbers,
the idea of statistical convergence was first introduced independently by Fast
[18], Steinhaus [58] and Schoenberg [55]. Some recent relevant studies on
statistical convergence and applications may be referred to attract a wider
audience as [8, 30, 33, 42, 43, 44]. One of its interesting generalization is
I -convergence introduced by Kostyrko et al. [39] where I is an ideal of
subsets of the set of natural numbers. Since then this concept is being nur-
tured as several applications in different settings by various researchers like
[3, 4, 16, 14, 17, 24, 29, 32, 34, 48, 50, 54].

After the introduction of fuzzy set theory by Zadeh [61], there has been
extensive effort to find applications and fuzzy analogues of the classical theories
and it is being applied in various branches of engineering and science, namely
[5, 19, 22, 31, 40]. The reader can refer to the recent monographs [6] and [7]
on certain developments of the spaces of double sequences and usage of four
dimensional triangle matrices, and classical sets of fuzzy valued sequences, and
related topics. Later on, the notion of fuzzy set theory has been developed
effectively and generalized into new notion as its extension like intuitionistic
fuzzy set [1], interval valued fuzzy set [60], interval valued intuitionistic fuzzy set
[2], vague fuzzy set [11]. As a generalization of crisp set, fuzzy set, intuitionistic
fuzzy set, Pythagorean fuzzy set, Smarandache [57] studied the concept of
neutrosophic set. Later on, Bera and Mahapatra introduced the notion of
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neutrosophic soft linear space [9] and neutrosophic soft normed linear space
[10].

In 2020, Kirişci and Şimşek [35] defined neutrosophic normed space and
studied the notion of statistical convergence. Granados and Dhital [23] in-
troduced the idea of statistical convergence of double sequences and Kişi [36]
discussed on ideal convergence for single sequences in the same space. Recently,
Murtaza et al. [49] defined neutrosophic 2-normed space and studied the notion
of statistical convergence. In this paper, we study the concept of I -convergence
of double sequences and I2-completeness with respect to neutrosophic 2-norm.

2. Preliminaries

Throughout the paper N and R indicate the set of natural numbers and
the set of reals respectively. |A| denotes the number of elements of the set A.
First we recall some basic definitions and notations which will be useful in the
sequal.

Definition 2.1. [46] Let K ⊆ N× N be a two-dimensional set of positive
integers and let K (m,n) be the numbers of (j, k) in K such that j ≤ m and
k ≤ n. Then the two-dimensional analogue of natural density can be defined
as follows.
The lower asymptotic density of the set K ⊆ N× N is defined as

δ2(K ) = lim
m,n

inf
K (m,n)

mn

. In case the sequence (K (m,n)
mn ) has a limit in Pringsheim’s sense then we say

that K has a double natural density and is defined as limm,n
K (m,n)
mn = δ2(K ).

Example 2.2. [46] Let K = {(i2, j2) : i, j ∈ N}. Then δ2(K ) =

limm,n
K (m,n)
mn ≤ limm,n

√
m

√
n

mn = 0 i.e. the set K has double natural den-

sity zero, while the set {(i, 2j) : i, j ∈ N} has double natural density 1
2 .

Note that, if we set m = n, we have a two-dimensional natural density due
to Christopher [12].

Definition 2.3. [46] A real double sequence {lmn} is said to be statistically
convergent to the number ξ if for each ε > 0, the set {(m,n),m ≤ i, n ≤ j :
|lmn − ξ| ≥ ε} has double natural density zero.

Definition 2.4. [39] A family I of subsets of a non empty set X is said
to be an ideal in X if the following conditions hold:

1. ∅ ∈ I ;
2. A ,B ∈ I implies A ∪ B ∈ I ;
3. A ∈ I and B ⊂ A implies B ∈ I .

An ideal I is called non trivial if X /∈ I and I ̸= ∅.
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Definition 2.5. [39] A non trivial ideal I ⊂ 2X is called admissible if
{{x} : x ∈ X } ⊂ I .

Definition 2.6. [39] A non empty family F of subsets of a non empty set
X is called a filter in X if the following properties hold:

1. ∅ /∈ F ;
2. A ,B ∈ F implies A ∩ B ∈ F ;
3. A ∈ F and A ⊂ B implies B ∈ F .

If I ⊂ 2X is a non trivial ideal then the class F (I ) = {X \A : A ∈ I }
is a filter on X which is called filter associated with the ideal I [39].

Definition 2.7. [39] An admissible ideal I ⊂ 2N is said to satisfy the con-
dition (AP ) if for every countable family of mutually disjoint sets {A1,A2, . . .}
belonging to I there exists a countable family of sets {B1,B2, . . .} such that
the symmetric difference Ai△Bi is finite for each i ∈ N and

⋃∞
i=1 Bi ∈ I .

Definition 2.8. [13] A non trivial ideal I2 of N×N is said to be strongly
admissible if {i} × N and N× {i} belong to I2 for each i ∈ N.

It is clear that a strongly admissible ideal is also admissible. Throughout
the discussion I2 stands for an admissible ideal of N × N unless otherwise
stated.

Definition 2.9. (see [13]) A double sequence {xmn} of real numbers is said
to be I2-convergent to ξ ∈ R if for every ε > 0, the set {(m,n) ∈ N × N :
|xmn − ξ| ≥ ε} ∈ I2.

Remark 2.10. (see [13]) (a) If we take I2 = I 0
2 , where I 0

2 = {A ⊂
N × N : ∃ m(A) ∈ N : i, j ≥ m(A) =⇒ (i, j) /∈ A}, then I 0

2 will be a non
trivial strongly admissible ideal and clearly an ideal I2 is strongly admissible
if and only if I 0

2 ⊂ I2. In this case I2-convergence coincides with ordinary
convergence of double sequences of real numbers.
(b) If we take I2 = I δ

2 , where I δ
2 = {A ⊂ N × N : δ2(A) = 0}, then I δ

2 -
convergence becomes statistical convergence of double sequences of real num-
bers.

Definition 2.11. (see [13]) An admissible ideal I2 ⊂ 2N×N is said to sat-
isfy the condition (AP2) if for every countable family of mutually disjoint
sets {A1,A2, . . .} belonging to I , there exists a countable family of sets
{B1,B2, . . .} such that the symmetric difference Ai△Bi ∈ I 0

2 i.e. Ai△Bi

is included in the finite union of rows and columns in N×N for each i ∈ N and⋃∞
i=1 Bi ∈ I2 (hence Bi ∈ I2 for each i ∈ N).
The notion of linear 2-normed space was introduced by Gähler in 1960 and

later on, this idea has been developed in different manners [20, 25, 26, 28].

Definition 2.12. [21] Let Z be a real vector space of dimension d, where
2 ≤ d < ∞. A 2-norm on Z is a function ∥., .∥ : Z × Z → R which satisfies
the following conditions:
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1. ∥x, y∥ = 0 if and only if x and y are linearly dependent in Z ;
2. ∥x, y∥ = ∥y, x∥ for all x, y in Z ;
3. ∥αx, y∥ = |α| ∥x, y∥ for all α in R and for all x, y in Z ;
4. ∥x+ y, z∥ ≤ ∥x, z∥+ ∥y, z∥ for all x, y, z in Z .

Example 2.13. [52] Let Z = R2. Define ∥·, ·∥ on R2 by ∥x, y∥ = |x1y2 −
x2y1|, where x = (x1, x2), y = (y1, y2) ∈ R2. Then (Z , ∥·, ·∥) is a 2-normed
space.

Definition 2.14. [53] A double sequence {umn} in a 2-normed space Z is
said to be I2-convergent to ξ ∈ Z if for every ε > 0 and nonzero z ∈ Z , the
set {(m,n) ∈ N× N : ∥umn − ξ, z∥ ≥ ε} ∈ I2.

Definition 2.15. [15] Let {umn} be a double sequence in a 2-normed space
Z and I2 be a strongly admissible ideal of N×N. Then {umn} is said to be I2-
Cauchy if for every ε > 0 and nonzero z ∈ Z there exist m0 = m0(ε, z), n0 =
n0(ε, z) ∈ N such that {(m,n) ∈ N× N : ∥umn − um0n0

− ξ∥ ≥ ε} ∈ I2.

Definition 2.16. [56] A binary operation � : [0, 1]× [0, 1] → [0, 1] is named
to be a continuous t-norm if the following conditions hold.

1. � is associative and commutative;
2. � is continuous;
3. x� 1 = x for all x ∈ [0, 1];
4. x� y ≤ z � w whenever x ≤ z and y ≤ w for each x, y, z, w ∈ [0, 1].

Definition 2.17. [56] A binary operation ⊙ : [0, 1]× [0, 1] → [0, 1] is named
to be a continuous t-conorm if the following conditions are satisfied.

1. ⊙ is associative and commutative;
2. ⊙ is continuous;
3. x⊙ 0 = x for all x ∈ [0, 1];
4. x⊙ y ≤ z ⊙ w whenever x ≤ z and y ≤ w for each x, y, z, w ∈ [0, 1].

Example 2.18. [38] The following are the examples of t-norms:

1. x� y = min{x, y};
2. x� y = x.y;
3. x� y = max{x+ y− 1, 0}. This t-norm is known as Lukasiewicz t-norm.

Example 2.19. [38] The following are the examples of t-conorms:

1. x⊙ y = max{x, y};
2. x⊙ y = x+ y − x.y;
3. x⊙ y = min{x+ y, 1}. This is known as Lukasiewicz t-conorm.

Lemma 2.20. [51] If � is a continuous t-norm, ⊙ is a continuous t-conorm,
ri ∈ (0, 1) and 1 ≤ i ≤ 7, then the following statements hold:

1. If r1 > r2, there are r3, r4 ∈ (0, 1) such that r1 �r3 ≥ r2 and r1 ≥ r2⊙r4
2. If r5 ∈ (0, 1), there are r6, r7 ∈ (0, 1) such that r6 � r6 ≥ r5 and r5 ≥
r7 ⊙ r7.
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Now we recall the notion of neutrosophic 2-normed space introduced by
Murtaza et al. [49].

Definition 2.21. [49] Let W be a vector space, N2 = {<
(l, z), ψ(l, z), φ(l, z), ϑ(l, z) >: (l, z) ∈ W × W } be a normed space such that
N2 : W ×W ×R+ → [0, 1]. Let � and ⊙ be the continuous t-norm and contin-
uous t-conorm respectively. Then the four tuple X = (W ,N2,�,⊙) is named
to be neutrosophic 2normed space (in short N2-NS) if for all l, s, z ∈ W and
η, ζ > 0 and for each β ̸= 0, the following conditions hold:

1. 0 ≤ ψ(l, z; η) ≤ 1, 0 ≤ φ(l, z; η) ≤ 1, 0 ≤ ϑ(l, z; η) ≤ 1, for all η ∈ R+;
2. ψ(l, z; η) + φ(l, z; η) + ϑ(l, z; η) ≤ 3, for η ∈ R+;
3. ψ(l, z; η) = 1 (for η > 0) iff l = θ, zero element in W ;
4. ψ(βl, z; η) = ψ(l, z; η

|β| );

5. ψ(l, z; η) � ψ(s, z; ζ) ≤ ψ(l + s, z; η + ζ);
6. ψ(l, z; ·) is a continuous non-decreasing function;
7. limη→∞ ψ(l, z; η) = 1;
8. φ(l, z; η) = 0 (for η > 0) iff l = θ;
9. φ(βl, z; η) = φ(l, z; η

|β| );

10. φ(l, z; η)⊙ φ(s, z; ζ) ≥ φ(l + s, z; η + ζ);
11. φ(l, z; ·) is a continuous non-increasing function;
12. limη→∞ φ(l, z; η) = 0;
13. ϑ(l, z; η) = 0 (for η > 0) iff l = θ;
14. ϑ(βl, z; η) = ϑ(l, z; η

|β| );

15. ϑ(l, z; η)⊙ ϑ(s, z; ζ) ≥ ϑ(l + s, z; η + ζ);
16. ϑ(l, z; ·) is a continuous non-increasing function;
17. limη→∞ ϑ(l, z; η) = 0;
18. If η ≤ 0, then ψ(l, z; η) = 0, φ(l, z; η) = 1, ϑ(l, z; η) = 1.

In this case N2 = (ψ,φ, ϑ) is called neutrosophic 2-norm.

Example 2.22. [49] Let (W , ∥, ., ∥) be a 2-normed space. Consider contin-
uous t-norm and continuous t-conorm as a � b = ab and a ⊙ b = a + b − ab
for all a, b ∈ [0, 1] respectively. Now, for x, y ∈ W and η > 0 with η > ∥x, y∥
consider

ψ(x, y; η) =
η

η + ∥x, y∥
, φ(x, y; η) =

∥x, y∥
η + ∥x, y∥

, ϑ(x, y; η) =
∥x, y∥
η

.

If we take η ≤ ∥x, y∥ then

ψ(x, y; η) = 0, φ(x, y; η) = 1 and ϑ(x, y; η) = 1.

Then (W ,N2,�,⊙) is a neutrosophic 2-normed space where N2 : W × W ×
R+ → [0, 1].

Definition 2.23. [45] A double sequence {lmn} in a N2-NS X is said to
be convergent to ξ ∈ X with respect to N2 if for every σ ∈ (0, 1), η > 0
there exists n0 ∈ N such that ψ(lmn − ξ, z; η) > 1− σ, φ(lmn − ξ, z; η) < σ and
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ϑ(lmn−ξ, z; η) < σ for allm,n ≥ n0 and nonzero z ∈ X , i.e. limm,n→∞ ψ(lmn−
ξ, z; η) = 1, limm,n→∞ φ(lmn − ξ, z; η) = 0 and limm,n→∞ ϑ(lmn − ξ, z; η) = 0.

In this case, we write N2 − lim lmn = ξ or lmn
N2−−→ ξ.

Definition 2.24. [45] A double sequence {lmn} in a N2-NS X is said to be
statistically convergent to ξ ∈ X with respect to N2 if for every σ ∈ (0, 1), η >
0 and nonzero z ∈ X , δ2({(m,n) ∈ N×N : ψ(lmn− ξ, z; η) ≤ 1−σ or φ(lmn−
ξ, z; η) ≥ σ and ϑ(lmn − ξ, z; η) ≥ σ}) = 0 or equivalently limi,j

1
ij |{m ≤ i, n ≤

j : ψ(lmn−ξ, z; η) ≤ 1−σ or φ(lmn−ξ, z; η) ≥ σ and ϑ(lmn−ξ, z; η) ≥ σ}| = 0.

In this case we write st2(N2) − lim lmn = ξ or lmn
st2(N2)−−−−−→ ξ and ξ is called

st2(N2)-limit of {lmn}.

Definition 2.25. [45] Let {lmn} be a double sequence in a N2-NS X ,
σ ∈ (0, 1) and η > 0. {lmn} is named to be statistically Cauchy with respect to
N2 if there exist m0 = m0(σ), n0 = n0(σ) ∈ N such that δ2({(m,n) ∈ N× N :
ψ(lmn−lm0n0 , z; η) ≤ 1−σ or φ(lmn−lm0n0 , z; η) ≥ σ and ϑ(lmn−lm0n0 , z; η) ≥
σ}) = 0 for nonzero z ∈ X .

3. Main Results

Das et al. [13] first introduced the idea of I -convergence of double se-
quences in metric spaces. Later on, this idea has been studied in different
settings by many authors [27, 47, 59]. Mohiuddine et al. [41] studied the no-
tion of I -convergence of double sequences in random 2-normed spaces. Kişi
[37] defined and studied I2-convergence in neutrosophic normed spaces. In
this section, we define and study I2-convergence and I2-Cauchy sequence and
prove some associted results in the line of investigations of them with respect
to neutrosophic 2-norm. Throughout this section X stands for neutrosophic
2-normed space unless otherwise stated. First we define the following:

Definition 3.1. Let {umn} be a double sequence in a N2-NS X . Then
{umn} is named to be I2-convergent to ξ ∈ X if for each σ ∈ (0, 1), η >
0 and nonzero z ∈ X , the set {(m,n) ∈ N × N : ψ(umn − ξ, z; η) ≤ 1 −
σ or φ(umn − ξ, z; η) ≥ σ, ϑ(umn − ξ, z; η) ≥ σ} ∈ I2. In this case we write

I2(N2)− limumn = ξ or umn
I2(N2)−−−−−→ ξ and ξ is called I2(N2)-limit of {umn}.

Lemma 3.2. Let {umn} be a double sequence in a N2-NS X . Then for
every σ ∈ (0, 1), η > 0 and for nonzero z ∈ X the following statements are
equivalent:

1. I2(N2)− limumn = ξ;
2. {(m,n) ∈ N× N : ψ(umn − ξ, z; η) ≤ 1− σ} ∈ I2 and {(m,n) ∈ N× N :
φ(umn−ξ, z; η) ≥ σ} ∈ I2, {(m,n) ∈ N×N : ϑ(umn−ξ, z; η) ≥ σ} ∈ I2;

3. {(m,n) ∈ N × N : ψ(umn − ξ, z; η) > 1 − σ and φ(umn − ξ, z; η) <
σ, ϑ(umn − ξ, z; η) < σ} ∈ F (I2);
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4. {(m,n) ∈ N×N : ψ(umn−ξ, z; η) > 1−σ} ∈ F (I2) and {(m,n) ∈ N×N :
φ(umn − ξ, z; η) < σ} ∈ F (I2), {(m,n) ∈ N × N : ϑ(umn − ξ, z; η) <
σ} ∈ F (I2);

5. I2(N2)− limψ(umn−ξ, z; η) = 1 and I2(N2)− limφ(umn−ξ, z; η) = 0,
I2(N2)− limϑ(umn − ξ, z; η) = 0.

Theorem 3.3. Let {umn} be a double sequence in a N2-NS X . If N2 −
limumn = ξ then I2(N2)− limumn = ξ.

Proof. Suppose that N2− limumn = ξ. Then for every σ ∈ (0, 1) and η > 0
there exists n0 ∈ N such that ψ(umn − ξ, z; η) > 1 − σ, φ(umn − ξ, z; η) < σ
and ϑ(umn − ξ, z; η) < σ for all m,n > n0 and nonzero z ∈ X . So, {(m,n) ∈
N×N : ψ(umn−ξ, z; η) ≤ 1−σ or φ(umn−ξ, z; η) ≥ σ, ϑ(umn−ξ, z; η) ≥ σ} ⊂
{1, 2, . . . , n0}×{1, 2, . . . , n0}. Since I2 is an admissible ideal, {(m,n) ∈ N×N :
ψ(umn − ξ, z; η) ≤ 1 − σ or φ(umn − ξ, z; η) ≥ σ, ϑ(umn − ξ, z; η) ≥ σ} ∈ I2

i.e., I2(N2)− limumn = ξ. This completes the proof.

Theorem 3.4. Let {umn} be a double sequence in a N2-NS X . If

umn
I2(N2)−−−−−→ ξ, I2(N2)-limit of {umn} is unique.

Proof. Suppose that umn
I2(N2)−−−−−→ ξ and umn

I2(N2)−−−−−→ γ where ξ ̸= γ. For
a given σ ∈ (0, 1) choose λ ∈ (0, 1) such that (1 − λ) � (1 − λ) > 1 − σ and
λ⊙λ < σ. Then for every η > 0 and nonzero z ∈ X , the sets {(m,n) ∈ N×N :
ψ(umn − ξ, z; η2 ) ≤ 1− λ or φ(umn − ξ, z; η2 ) ≥ λ, ϑ(umn − ξ, z; η2 ) ≥ λ} ∈ I2

and {(m,n) ∈ N×N : ψ(umn−γ, z; η2 ) ≤ 1−λ or φ(umn−γ, z; η2 ) ≥ λ, ϑ(umn−
γ, z; η2 ) ≥ λ} ∈ I2. Consider Aψ1 = {(m,n) ∈ N×N : ψ(umn−ξ, z; η2 ) ≤ 1−λ};
Aφ1 = {(m,n) ∈ N × N : φ(umn − ξ, z; η2 ) ≥ λ}; Aϑ1 = {(m,n) ∈ N × N :
ϑ(umn − ξ, z; η2 ) ≥ λ} and Aψ2 = {(m,n) ∈ N×N : ψ(umn − γ, z; η2 ) ≤ 1− λ};
Aφ2 = {(m,n) ∈ N × N : φ(umn − γ, z; η2 ) ≥ λ}; Aϑ2 = {(m,n) ∈ N × N :
ϑ(umn − γ, z; η2 ) ≥ λ}. Let Aψ,φ,ϑ = [Aψ1 ∪Aψ2] ∩ [Aφ1 ∪Aφ2] ∩ [Aϑ1 ∪Aϑ2].
Using Lemma3.2, we get Aψ,φ,ϑ ∈ I2. So, let (m,n) ∈ A c

ψ,φ,ϑ. There arise
three possible cases.
Case− i : If (m,n) ∈ A c

ψ1∩A c
ψ2 then for nonzero z ∈ X we have ψ(ξ−γ, z; η) ≥

ψ(umn − ξ, z; η2 )�ψ(umn − γ, z; η2 ) > (1− λ)� (1− λ) > 1− σ. Since σ > 0 is
arbitrary, ψ(ξ − γ, z; η) = 1 for every η > 0. Hence ξ = γ.
Case− ii : If (m,n) ∈ A c

φ1 ∩ A c
φ2 then for nonzero z ∈ X , we have φ(ξ −

γ, z; η) ≤ φ(umn − ξ, z; η2 ) ⊙ φ(umn − γ, z; η2 ) < λ ⊙ λ < σ. Since σ > 0 is
arbitrary, φ(ξ − γ, z; η) = 0. This implies ξ = γ.
Case− iii : If (m,n) ∈ A c

ϑ1 ∩ A c
ϑ2 then for nonzero z ∈ X we have ϑ(ξ −

γ, z; η) ≤ ϑ(umn − ξ, z; η2 ) ⊙ ϑ(umn − γ, z; η2 ) < λ ⊙ λ < σ. Since σ > 0 is
arbitrary, ϑ(ξ − γ, z; η) = 0. This implies ξ = γ.
Therefore, we conclude that I2(N2)-limit of {umn} is unique. This completes
the proof.

Theorem 3.5. Let {umn} be a double sequence in a N2-NS X . Then we
have
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1. If umn
I2(N2)−−−−−→ ξ and wmn

I2(N2)−−−−−→ γ, umn + wmn
I2(N2)−−−−−→ ξ + γ;

2. If umn
I2(N2)−−−−−→ ξ, cumn

I2(N2)−−−−−→ cξ.

Proof. 1. For a given σ ∈ (0, 1) choose λ ∈ (0, 1) such that (1−λ)� (1−
λ) > 1 − σ and λ ⊙ λ < σ. Since umn

I2(N2)−−−−−→ ξ, for every η > 0 and
nonzero z ∈ X we get

Aψ1 = {(m,n) ∈ N× N : ψ(umn − ξ, z;
η

2
) ≤ 1− λ} ∈ I2

Aφ1 = {(m,n) ∈ N× N : φ(umn − ξ, z;
η

2
) ≥ λ} ∈ I2

Aϑ1 = {(m,n) ∈ N× N : ϑ(umn − ξ, z;
η

2
) ≥ λ} ∈ I2.

Again, since wmn
I2(N2)−−−−−→ γ,

Aψ2 = {(m,n) ∈ N× N : ψ(wmn − γ, z;
η

2
) ≤ 1− λ} ∈ I2

Aφ2 = {(m,n) ∈ N× N : φ(wmn − γ, z;
η

2
) ≥ λ} ∈ I2

Aϑ2 = {(m,n) ∈ N× N : ϑ(wmn − γ, z;
η

2
) ≥ λ} ∈ I2.

Now, let Aψ,φ,ϑ = [Aψ1 ∪ Aψ2] ∩ [Aφ1 ∪ Aφ2] ∩ [Aϑ1 ∪ Aϑ2]. Using
Lemma 3.2, we get Aψ,φ,ϑ ∈ I2. So, let (i, j) ∈ A c

ψ,φ,ϑ. Now, for

(i, j) ∈ A c
ψ1 ∩ A c

ψ2 we have

ψ(uij + wij − (ξ + γ), z; η) ≥ ψ(uij − ξ, z;
η

2
) � ψ(wij − γ, z;

η

2
)

> (1− λ) � (1− λ)

> 1− σ.

Again for (i, j) ∈ A c
φ1 ∩ A c

φ2,

φ(uij + wij − (ξ + γ), z; η) ≤ φ(uij − ξ, z;
η

2
)⊙ φ(wij − γ, z;

η

2
)

< λ⊙ λ

< σ.

Similarly, for (i, j) ∈ A c
ϑ1∩A c

ϑ2, ϑ(uij+wij−(ξ+γ), z; η) < σ. Therefore
{(i, j) ∈ N × N : ψ(uij + wij − (ξ + γ), z; η) ≤ 1 − σ or φ(uij + wij −
(ξ + γ), z; η) ≥ σ, ϑ(uij + wij − (ξ + γ), z; η) ≥ σ} ⊆ Aψ,φ,ϑ ∈ I2 i.e.,

umn + wmn
I2(N2)−−−−−→ ξ + γ.

2. It is obvious if c = 0. So, we consider c ̸= 0. Since umn
I2(N2)−−−−−→ ξ, for

every σ ∈ (0, 1), η > 0 and nonzero z ∈ X , the set A = {(m,n) ∈ N×N :
ψ(umn− ξ, z; η) ≤ 1− σ or φ(umn− ξ, z; η) ≥ σ, ϑ(umn− ξ, z; η) ≥ σ} ∈
I2. Now for (m,n) ∈ A c, we get ψ(cumn−cξ, z; η) = ψ(umn−ξ, z; η|c| ) ≥
ψ(umn − ξ, z; η) � ψ(θ, z; η|c| − η) = ψ(umn − ξ, z; η) � 1 = ψ(umn −
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ξ, z; η) > 1−σ, φ(cumn−cξ, z; η) = φ(umn−ξ, z; η|c| ) ≤ φ(umn−ξ, z; η)⊙
φ(θ, z; η|c| − η) = φ(umn − ξ, z; η) ⊙ 0 = φ(umn − ξ, z; η) < σ. Similarly

ϑ(cumn − cξ, z; η) < σ. Therefore {(m,n) ∈ N×N : ψ(cumn − cξ, z; η) ≤
1 − σ or φ(cumn − cξ, z; η) ≥ σ, ϑ(cumn − cξ, z; η) ≥ σ} ⊆ A ∈ I2.

Therefore cumn
I2(N2)−−−−−→ cξ.

This completes the proof.

Now we define I ∗-convergence of double sequences with respect to N2.

Definition 3.6. Let {umn} be a double sequence in a N2-NS X . Then
{umn} is said to be I ∗

2 -convergent to ξ ∈ X with respect to the neutrosophic
2-norm N2 if there exists a set M = {m1 < m2 < · · · < mp < · · · ;n1 < n2 <
· · · < nq < · · · } ⊂ N × N such that M ∈ F (I2) and N2 − limumpnq

= ξ. In

this case we write I ∗
2 (N2) − limumn = ξ or umn

I ∗
2 (N2)−−−−−→ ξ and ξ is called

I ∗
2 (N2)-limit of {umn}.

Theorem 3.7. Let {umn} be a double sequence in a N2-NS X and I2 be

a strongly admissible ideal. If umn
I ∗

2 (N2)−−−−−→ ξ then umn
I2(N2)−−−−−→ ξ.

Proof. Suppose that umn
I ∗

2 (N2)−−−−−→ ξ. Then there exists a set M = {m1 <
m2 < · · · < mp < · · · ;n1 < n2 < · · · < nq < · · · } ⊂ N × N such that
M ∈ F (I2) (i.e. N × N \ M = A ∈ I2) and N2 − limumpnq

= ξ. So for
each σ ∈ (0, 1), η > 0 and nonzero z ∈ X , there exists a p0 ∈ N such that
ψ(umpnq − ξ, z; η) > 1 − σ, φ(umpnq − ξ, z; η) < σ and ϑ(umpnq − ξ, z; η) < σ
for all p, q > p0. Hence {(m,n) ∈ N×N : ψ(umn − ξ, z; η) ≤ 1− σ or φ(umn −
ξ, z; η) ≥ σ, ϑ(umn − ξ, z; η) ≥ σ} ⊂ A ∪ (M ∩ ({m1,m2, . . . ,mp0} × N ∪
N × {n1, n2, . . . , np0})) ∈ I2. Therefore umn

I2(N2)−−−−−→ ξ. This completes the
proof.

In general, the converse of Theorem 3.7 is not true which can be shown by
the following example.

Example 3.8. Let W = R2 and (W , ∥, ., ∥) be a 2-normed space with
∥x, y∥ = |x1y2 − x2y1|, where x = (x1, x2), y = (y1, y2) ∈ R2. Consider contin-
uous t-norm and continuous t-conorm as a� b = ab and a⊙ b = min{a+ b, 1}
for all a, b ∈ [0, 1] respectively. Now, for x, y ∈ W and η > 0 with η > ∥x, y∥,
consider

ψ(x, y; η) =
η

η + ∥x, y∥
, φ(x, y; η) =

∥x, y∥
η + ∥x, y∥

, ϑ(x, y; η) =
∥x, y∥
η

.

Then (W ,N2,�,⊙) is a neutrosophic 2-normed space with regards to neutro-
sophic 2-norm N2 = (ψ,φ, ϑ). Let N × N =

⋃
p,q Dpq be a decomposition of

N × N such that for any (m,n) ∈ N × N each Dpq contains infinitely many
(p, q)′s where p ≥ m, q ≥ n and Dpq ∩Dmn = ∅ where (p, q) ̸= (m,n). Now we
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define the double sequence {umn} by umn =
(

1
pq , 0

)
if (m,n) ∈ Dpq. Then, for

η > 0 and nonzero z = (z1, z2) ∈ W we have

ψ(umn, z; η) =
η

η + ∥umn, z∥
→ 1

φ(umn, z; η) =
∥umn, z∥

η + ∥umn, z∥
→ 0

ϑ(umn, z; η) =
∥umn, z∥

η
→ 0

as m,n → ∞. Therefore N2 − limumn = 0. Since I2 is an admissible ideal,
I2(N2)− limumn = 0.

But {umn} is not I ∗
2 -convergent to 0 ∈ W . If possible, let I ∗

2 (N2) −
limumn = 0. Then there exists a set M = {m1 < m2 < · · · < ms < · · · ;n1 <
n2 < · · · < nt < · · · } ⊂ N×N such that M ∈ F (I2) and N2 − limumsnt

= 0.
Since M ∈ F (I2), there is a set A ∈ I2 such that M = N × N \ A . Now
from the definition of I2, there exist i, j ∈ N such that

A ⊂ (∪im=1(∪∞
n=1Dmn)) ∪ (∪jn=1(∪∞

m=1Dmn)).

But then Di+1,j+1 ⊂ M . So, umsnt
=
(

1
(i+1)(j+1) , 0

)
for infinitely many

(ms, nt) ∈ M which contradicts the fact N2 − limumsnt
= 0.

Now we see under what condition the converse of Theorem 3.7 is true.

Theorem 3.9. Let {umn} be a double sequence in a N2-NS X . If I2

satisfies the condition (AP2) then umn
I2(N2)−−−−−→ ξ =⇒ umn

I ∗
2 (N2)−−−−−→ ξ.

Proof. Suppose that I2 satisfies the condition (AP2) and umn
I2(N2)−−−−−→ ξ.

Then for each σ ∈ (0, 1),η > 0 and nonzero z ∈ X the set {(m,n) ∈ N × N :
ψ(umn − ξ, z; η) ≤ 1 − σ or φ(umn − ξ, z; η) ≥ σ, ϑ(umn − ξ, z; η) ≥ σ} ∈ I2.
For k ∈ N, η > 0 and nonzero z ∈ X , consider Bk = {(m,n) ∈ N×N : 1− 1

k ≤
ψ(umn − ξ, z; η) < 1 − 1

k+1 or 1
k+1 < φ(umn − ξ, z; η) ≤ 1

k ,
1
k+1 < ϑ(umn −

ξ, z; η) ≤ 1
k}. Clearly {B1,B2, . . .} is countable and pairwise disjoint and each

Bk ∈ I2. Since I2 satisfies the condition (AP2), there exists a countable
family {C1,C2, . . .} such that the symmetric difference Bk△Ck is included in
finite union of rows and columns in N× N for each k and C =

⋃∞
k=1 Ck ∈ I2.

Now from associated filter of I2 there is M ∈ F (I2) such that M = N×N\C .
It is sufficient to prove that the subsequence {umn}(m,n)∈M is convergent to ξ
with regards to neutrosophic 2-norm N2. Let λ ∈ (0, 1), η > 0. Choose s ∈ N
such that 1

s < λ. Then {(m,n) ∈ N×N : ψ(umn − ξ, z; η) ≤ 1− λ or φ(umn −
ξ, z; η) ≥ λ, ϑ(umn − ξ, z; η) ≥ λ} ⊂ {(m,n) ∈ N × N : ψ(umn − ξ, z; η) ≤
1− 1

s or φ(umn− ξ, z; η) ≥ 1
s , ϑ(umn− ξ, z; η) ≥

1
s} ⊂

⋃s+1
k=1 Bk. Since Bk△Ck

are included in finite union of rows and columns for k = 1, 2, . . ., there exists
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(s0, t0) ∈ N× N such that(
s+1⋃
k=1

Ck

)⋂
{m ≥ s0 and n ≥ t0} =

(
s+1⋃
k=1

Bk

)⋂
{m ≥ s0 and n ≥ t0}.

If m ≥ s0, n ≥ t0 and (m,n) /∈ C then (m,n) /∈
⋃s+1
k=1 Ck. Hence (m,n) /∈⋃s+1

k=1 Bk. Therefore for every m ≥ s0, n ≥ t0 and (m.n) ∈ M we get ψ(umn−

ξ, z; η) > 1−λ, φ(umn−ξ, z; η) < λ and ϑ(umn−ξ, z; η) < λ. So, umn
I ∗

2 (N2)−−−−−→
ξ. This completes the proof.

Now we define the notion of I2-Cauchy sequence with regards to N2.

Definition 3.10. Let {umn} be a double sequence in a N2-NS X and
σ ∈ (0, 1) and η > 0. Then {umn} is named to be I2-Cauchy with re-
gards to neutrosophic 2-norm N2 if for nonzero z ∈ X there exist n0 =
n0(σ, z), m0 = m0(σ, z) ∈ N such that {(m,n) ∈ N×N : ψ(umn−um0n0 , z; η) ≤
1− σ or φ(umn − um0n0

, z; η) ≥ σ, ϑ(umn − um0n0
, z; η) ≥ σ} ∈ I2.

Now we proceed with the investigations of relation between I2-Cauchy se-
quence and I2-convergence with respect to the neutrosophic 2-norm N2.

Theorem 3.11. Let {umn} be a double sequence in a N2-NS X . If {umn}
is I2-convergent with regards to N2 then it is I2-Cauchy with regards to N2.

Proof. Let {umn} be I2-convergent to ξ ∈ X and σ ∈ (0, 1) be given.
Choose λ ∈ (0, 1) such that (1 − λ) � (1 − λ) > 1 − σ and λ ⊙ λ < σ. Then
for every η > 0 and nonzero z ∈ X , the set A = {(m,n) ∈ N × N : ψ(umn −
ξ, z; η2 ) ≤ 1 − λ or φ(umn − ξ, z; η2 ) ≥ λ, ϑ(umn − ξ, z; η2 ) ≥ λ} ∈ I2. Then
A c ∈ F (I2). So A c ̸= ∅. Then there is (m0, n0) ∈ A c. Now, we define
B = {(m,n) ∈ N×N : ψ(umn− um0n0

, z; η) ≤ 1− σ or φ(umn− um0n0
, z; η) ≥

σ, ϑ(umn−um0n0
, z; η) ≥ σ}. It is sufficient to prove the theorem that B ⊂ A .

Let (i, j) ∈ B. Then we get

ψ(uij−um0n0 , z; η) ≤ 1−σ or φ(uij−um0n0 , z; η) ≥ σ, ϑ(uij−um0n0 , z; η) ≥ σ.

Case− i : We consider ψ(uij−um0n0 , z; η) ≤ 1−σ. We show ψ(uij−ξ, z; η2 ) ≤
1− λ. If possible, let ψ(uij − ξ, z; η2 ) > 1− λ. Then we have 1− σ ≥ ψ(uij −
um0n0

, z; η) ≥ ψ(uij − ξ, z; η2 )�ψ(um0n0
− ξ, z; η2 ) > (1− λ)� (1− λ) > 1− σ,

which is not possible. So, ψ(uij − ξ, z; η2 ) ≤ 1− λ.
Case− ii : We consider φ(uij−um0n0

, z; η) ≥ σ. We show φ(uij− ξ, z; η2 ) ≥ λ.
If possible, let φ(uij − ξ, z; η2 ) < λ. Then we have σ ≤ φ(uij − um0n0

, z; η) ≤
φ(uij − ξ, z; η2 ) ⊙ φ(um0n0 − ξ, z; η2 ) < λ ⊙ λ < σ, which is not possible. So,
φ(uij − ξ, z; η2 ) ≥ λ.
Case− iii : If we consider ϑ(uij − um0n0

, z; η) ≥ σ then in the line of Case-II
we can show that ϑ(uij − ξ, z; η2 ) ≥ λ.

Combining the above three cases we get (i, j) ∈ A i.e. B ⊂ A ∈ I2. Hence
{umn} is I2-Cauchy with regards to N2. This completes the proof.
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Theorem 3.12. Let {umn} be a double sequence in a N2-NS X . If {umn}
is I2-Cauchy with regards to N2 then it is I2-convergent with regards to N2.

Proof. Let {umn} be I2-Cauchy with regards to N2 but it is not I2-
convergent to ξ ∈ X with regards to N2. Then for σ ∈ (0, 1), η > 0 and
nonzero z ∈ X , there exist n0 = n0(σ, z), m0 = m0(σ, z) ∈ N such that
A = {(m,n) ∈ N×N : ψ(umn−um0n0

, z; η) ≤ 1−σ or φ(umn−um0n0
, z; η) ≥

σ, ϑ(umn − um0n0
, z; η) ≥ σ} ∈ I2 and B = {(m,n) ∈ N × N : ψ(umn −

ξ, z; η2 ) > 1 − σ and φ(umn − ξ, z; η2 ) < σ, ϑ(umn − ξ, z; η2 ) < σ} ∈ I2.
So, Bc ∈ F (I2). Since ψ(umn − um0n0 , z; η) ≥ 2ψ(umn − ξ, z; η2 ) > 1 − σ
and φ(umn − um0n0 , z; η) ≤ φ(umn − ξ, z; η2 ) < σ, ϑ(umn − um0n0 , z; η) ≤
ϑ(umn − ξ, z; η2 ) < σ if ψ(umn − ξ, z; η2 ) >

1−σ
2 and φ(umn − ξ, z; η2 ) <

η
2 ,

ϑ(umn− ξ, z; η2 ) <
η
2 . This implies A c ∈ I2 which leads to a contradiction be-

cause {umn} is I2-Cauchy with regards to N2. Hence {umn} is I2-convergent
with regards to N2. This completes the proof.

Definition 3.13. A N2-NS X is named to be I2-complete with regards
to N2 if every I2-Cauchy sequence is I2-convergent with regards to N2.

Remark 3.14. In the light of Theorems 3.11 and 3.12, we see every neu-
trosophic 2-normed space is I2-complete.

Conclusion and future developments

In this paper, we have dealt with I2 convergent sequences in N2-NS and
have shown that every N2-NS is I2-complete. Later on, these results may be
the opening of new tools to generalize this notion in various direction such
as I2-statistical and I2-lacunary statistical convergence with respect to N2.
Also, this idea can be used in the field of convergence related problems in many
branches of science and engineering.
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[24] A. Ç. Güler, I -convergence in fuzzy cone normed spaces, Sahand Commun. Math. Anal.

18 (2021), no. 4, 45–57.

[25] H. Gunawan and Mashadi, On finite dimensional 2-normed spaces, Soochow. J. Math.
27 (2001), no. 3, 321–329.
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