DOI QR코드

DOI QR Code

Internal modals interactions analysis in terms of AFG nanorods based on Rayleigh model of nonlinear nonlocal axial behaviour

  • Received : 2021.06.19
  • Accepted : 2024.08.20
  • Published : 2024.09.10

Abstract

Nonlinear internal modals interactions analysis of axially functionally graded nanorods is evaluated on the basis of nonlocal elasticity theory and Rayleigh beam model for the first time. Functionally graded materials can be determined as nonhomogeneous composites which are obtained by combining of two various materials in order to get a new ideal material. In this research, material properties of nanorods are supposed to be calmly varied along the axial direction. Hamilton's principle is used to derive the equations with consideration of Von-Kármán's geometrically nonlinearity. Harmonic Differential Quadrature (HDQ) and Multiple Scale (MS) solution techniques are used to derive an approximate-analytic solution to the linear and nonlinear free axial vibration problem of non-classical nanorods for clamped-clamped and clamped-free boundary conditions. A parametric study is carried out to indicate the effects of index of AFG, aspect ratio, mode number, internal resonances and nonlinear amplitude on nonlinear nonlocal frequencies of axially functionally graded nanorods. Also, the effects of nonlocal and nonlinear coefficients and AFG index on relationships of internal resonances have been investigated. The presented theatrical-semi analytical model has the ability to predict very suitable results for extracting the internal modal interactions in the AFG nanorod.

Keywords

Acknowledgement

The authors acknowledge the financial support of the Iran University of Science and Technology Grant and the Iran Research Chairs.

References

  1. Akgoz, B. and Omer, C. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler micro-beams based on the modified couple stress theory", Compos Struct, 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020.
  2. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Modell, 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  3. Amabili, M. and Balasubramanian, P. (2020), "Nonlinear vibrations of truncated conical shells considering multiple internal resonances", Nonlinear Dyn., 1-17. https://doi.org/10.1007/s11071-020-05507-8.
  4. Arvin, H., Hosseini, S.M.H. and Kiani, Y. (2021), "Free vibration analysis of pre/post buckled rotating functionally graded beams subjected to uniform temperature rise", Thin-Wall. Struct., 158, 107187. https://doi.org/10.1016/j.tws.2020.107187.
  5. Aydogdu, M. and Vedat T. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater Des, 28(5), 1651-1656, https://doi.org/10.1016/j.matdes.2006.02.007.
  6. Bellifa, H., Selim, M.M., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A. and Tounsi, A. (2021), "Influence of porosity on thermal buckling behavior of functionally graded beams", Smart Struct. Syst, 27(4), 719. http://dx.doi.org/10.12989/sss.2021.27.4.719.
  7. Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng Struct, 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005.
  8. Ebrahimi, F. and Mohammad Reza, B. (2017), "Thermal-induced nonlocal vibration characteristics of heterogeneous beams", Adv. Mater. Res. 6(2), 93. http://dx.doi.org/10.12989/amr.2017.6.2.093.
  9. Ebrahimi, F. and Mohammad, R.B. (2018), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518.
  10. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  11. Eringen, A.C. (2002), "Nonlocal continuum field theories", Springer Science & Business Media.
  12. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225 (72)90039-0.
  13. Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Martins, P.A.L.S. (2005), "Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method", Compos Struct, 69(4), 449-457. https://doi.org/10.1016/j.compstruct.2004.08.003.
  14. Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett., 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X (02)01419-2.
  15. Gad-el-Hak, M. (1996), "Compliant coatings: A decade of progress", Appl. Mech. Rev, 49(10S), S147-S157. https://doi.org/10.1115/1.3101966.
  16. Genao, F.Y., Kim, J. and Zur, K.K. (2021), "Nonlinear finite element analysis of temperature-dependent functionally graded porous micro-plates under thermal and mechanical loads", Compos Struct, 256, 112931. https://doi.org/10.1016/j.compstruct.2020.112931.
  17. Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct, 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.
  18. Hosseini-Hashemi, Sh., Zare, M. and Nazemnezhad, R. (2013), "An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity", Compos. Struct., 100, 290-299. https://doi.org/10.1016/j.compstruct.2012.11.035.
  19. Li, X., Bhushan, B., Takashima, K., Baek, C.W. and Kim, Y.K. (2003), "Mechanical characterization of micro/nanoscale structures for MEMS/NEM'S applications using nanoindentation techniques", Ultramicroscopy, 97(1-4), 481-494. https://doi.org/10.1016/S0304-3991 (03)00077-9.
  20. Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos Struct, 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032.
  21. Li, Z., Xu, Y. and Huang, D. (2021), "Analytical solution for vibration of functionally graded beams with variable cross-sections resting on Pasternak elastic foundations", Int. J. Mech. Sci., 191, 106084, https://doi.org/10.1016/j.ijmecsci.2020.106084.
  22. Malekzadeh, P. and Karami, G. (2005), "Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates", Eng Struct., 27(10), 1563-1574. https://doi.org/10.1016/j.engstruct.2005.03.017.
  23. Momeni, M. and Botshekanan, D. (2019), "Frequency analysis of sandwich beam with FG carbon nanotubes face sheets and flexible core using high-order element", Mech. Adv. Mater. Struct., 26(9), 805-815. https://doi.org/10.1080/15376494.2017.1410918.
  24. Nayfeh, A.H. and Nayfeh, S.A. (1994), "On nonlinear modes of continuous systems", J. Vib. Acoust., 116(1), 129-136. https://doi.org/10.1115/1.2930388.
  25. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos B: Eng., 43(2), 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009.
  26. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Nummer. Methods Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663: AID-NME787>3.0.CO; 2-8.
  27. Roque, C.M., Ferreira, A.J., Neves, A.M., Fasshauer, G.E., Soares, C.M. and Jorge, R.M.N. (2010), "Dynamic analysis of functionally graded plates and shells by radial basis functions", Mech. Adv. Mater. Struct., 17(8), 636-652. https://doi.org/10.1080/15376494.2010.518932.
  28. Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538 (01)00007-0.
  29. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
  30. Shakhlavi, S.J, Nazemnezhad, R., Hosseini Hashemi, S. and Amabili, M. (2021), "On nonlocal nonlinear internal resonances of gold nano scale rod", 10th International Conference on Acoustics and Vibration, https://civilica.com/doc/1163426.
  31. Shakhlavi, S.J, Shahrokh, H.H. and Reza, N. (2020a), "Torsional vibrations investigation of nonlinear nonlocal behaviour in terms of functionally graded nanotubes", Int. J. Non-Linear Mech., 103513. https://doi.org/10.1016/j.ijnonlinmec.2020.103513.
  32. Shakhlavi, S.J, Shahrokh, H.H. and Reza, N. (2020b), "Investigation of nonlinear torsional oscillations on functionally graded nano-rod", The Biennial Int Conf on Exp Solid Mech, in IUST.
  33. Shakhlavi, S.J. (2023), "On nonlinear damping effects with nonlinear temperature-dependent properties for an axial thermos-viscoelastic rod", Int. J. Non-Linear Mech., 153, 104418. https://doi.org/10.1016/j.ijnonlinmec.2023.104418.
  34. Shakhlavi, S.J. (2024a), "Nonlinear nonlocal damping effects under magnetic loads of a ferromagnetic-viscoelastic nanotube exposed to a nonlinear elastic medium with nonlocal viscosity", Commun. Nonlinear Sci. Numer. Simul., 130, 107690. https://doi.org/10.1016/j.cnsns.2023.107690.
  35. Shakhlavi, S.J. and Nazemnezhad, R. (2024b), "Study on derivation from large amplitude size dependent internal resonances of homogeneous and FG rod-types", Adv. Nano Res, 16(2), 111-125. https://doi.org/10.12989/anr.2024.16.2.111.
  36. Shakhlavi, S.J. and Nazemnezhad, R. (2024c), "Comprehensive study of internal modals interactions: Comparison of various axial nonlinear beam theories", Adv. Nano Res, 16(3), 273-288. https://doi.org/10.12989/anr.2024.16.3.273.
  37. Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2022a), "Thermal stress effects on size-dependent nonlinear axial vibrations of nanorods exposed to magnetic fields surrounded by nonlinear elastic medium", J. Therm. Stress., 45(2),139-153. https://doi.org/10.1080/01495739.2021.2003275.
  38. Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2022b), "Nonlinear nano-rod-type analysis of internal resonances and geometrically considering nonlocal and inertial effects in terms of Rayleigh axial vibrations", Eur. Phys. J. Plus, 137(4), 1-20. https://doi.org/10.1140/epjp/s13360-022-02594-x.
  39. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
  40. Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater Des., 30(3), 741-74., https://doi.org/10.1016/j.matdes.2008.05.015.
  41. Striz, A.G., Wang, X. and Bert, C.W. (1995), "Harmonic differential quadrature method and applications to analysis of structural components", Acta Mech., 111(1), 85-94. https://doi.org/10.1007/BF01187729.
  42. Yadav, A., Amabili, M., Panda, S.K. and Dey, T. (2019), "Nonlinear vibration response of functionally graded circular cylindrical shells subjected to thermo-mechanical loading", Compos Struct, 229, 111430. https://doi.org/10.1016/j.compstruct.2019.111430.
  43. Yang, J.E., Park, W.H., Kim, C.J., Kim, Z.H. and Jo, M.H. (2008), "Axially graded heteroepitaxy and Raman spectroscopic characterizations of Si 1- x Ge x nanowires", App. Phy. Lett., 92(26), 263111. https://doi.org/10.1063/1.2939564.