Acknowledgement
The authors acknowledge the financial support of the Iran University of Science and Technology Grant and the Iran Research Chairs.
References
- Akgoz, B. and Omer, C. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler micro-beams based on the modified couple stress theory", Compos Struct, 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020.
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Modell, 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
- Amabili, M. and Balasubramanian, P. (2020), "Nonlinear vibrations of truncated conical shells considering multiple internal resonances", Nonlinear Dyn., 1-17. https://doi.org/10.1007/s11071-020-05507-8.
- Arvin, H., Hosseini, S.M.H. and Kiani, Y. (2021), "Free vibration analysis of pre/post buckled rotating functionally graded beams subjected to uniform temperature rise", Thin-Wall. Struct., 158, 107187. https://doi.org/10.1016/j.tws.2020.107187.
- Aydogdu, M. and Vedat T. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater Des, 28(5), 1651-1656, https://doi.org/10.1016/j.matdes.2006.02.007.
- Bellifa, H., Selim, M.M., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A. and Tounsi, A. (2021), "Influence of porosity on thermal buckling behavior of functionally graded beams", Smart Struct. Syst, 27(4), 719. http://dx.doi.org/10.12989/sss.2021.27.4.719.
- Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng Struct, 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005.
- Ebrahimi, F. and Mohammad Reza, B. (2017), "Thermal-induced nonlocal vibration characteristics of heterogeneous beams", Adv. Mater. Res. 6(2), 93. http://dx.doi.org/10.12989/amr.2017.6.2.093.
- Ebrahimi, F. and Mohammad, R.B. (2018), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. (2002), "Nonlocal continuum field theories", Springer Science & Business Media.
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225 (72)90039-0.
- Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Martins, P.A.L.S. (2005), "Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method", Compos Struct, 69(4), 449-457. https://doi.org/10.1016/j.compstruct.2004.08.003.
- Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett., 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X (02)01419-2.
- Gad-el-Hak, M. (1996), "Compliant coatings: A decade of progress", Appl. Mech. Rev, 49(10S), S147-S157. https://doi.org/10.1115/1.3101966.
- Genao, F.Y., Kim, J. and Zur, K.K. (2021), "Nonlinear finite element analysis of temperature-dependent functionally graded porous micro-plates under thermal and mechanical loads", Compos Struct, 256, 112931. https://doi.org/10.1016/j.compstruct.2020.112931.
- Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct, 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.
- Hosseini-Hashemi, Sh., Zare, M. and Nazemnezhad, R. (2013), "An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity", Compos. Struct., 100, 290-299. https://doi.org/10.1016/j.compstruct.2012.11.035.
- Li, X., Bhushan, B., Takashima, K., Baek, C.W. and Kim, Y.K. (2003), "Mechanical characterization of micro/nanoscale structures for MEMS/NEM'S applications using nanoindentation techniques", Ultramicroscopy, 97(1-4), 481-494. https://doi.org/10.1016/S0304-3991 (03)00077-9.
- Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos Struct, 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032.
- Li, Z., Xu, Y. and Huang, D. (2021), "Analytical solution for vibration of functionally graded beams with variable cross-sections resting on Pasternak elastic foundations", Int. J. Mech. Sci., 191, 106084, https://doi.org/10.1016/j.ijmecsci.2020.106084.
- Malekzadeh, P. and Karami, G. (2005), "Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates", Eng Struct., 27(10), 1563-1574. https://doi.org/10.1016/j.engstruct.2005.03.017.
- Momeni, M. and Botshekanan, D. (2019), "Frequency analysis of sandwich beam with FG carbon nanotubes face sheets and flexible core using high-order element", Mech. Adv. Mater. Struct., 26(9), 805-815. https://doi.org/10.1080/15376494.2017.1410918.
- Nayfeh, A.H. and Nayfeh, S.A. (1994), "On nonlinear modes of continuous systems", J. Vib. Acoust., 116(1), 129-136. https://doi.org/10.1115/1.2930388.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos B: Eng., 43(2), 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Nummer. Methods Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663: AID-NME787>3.0.CO; 2-8.
- Roque, C.M., Ferreira, A.J., Neves, A.M., Fasshauer, G.E., Soares, C.M. and Jorge, R.M.N. (2010), "Dynamic analysis of functionally graded plates and shells by radial basis functions", Mech. Adv. Mater. Struct., 17(8), 636-652. https://doi.org/10.1080/15376494.2010.518932.
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538 (01)00007-0.
- Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048.
- Shakhlavi, S.J, Nazemnezhad, R., Hosseini Hashemi, S. and Amabili, M. (2021), "On nonlocal nonlinear internal resonances of gold nano scale rod", 10th International Conference on Acoustics and Vibration, https://civilica.com/doc/1163426.
- Shakhlavi, S.J, Shahrokh, H.H. and Reza, N. (2020a), "Torsional vibrations investigation of nonlinear nonlocal behaviour in terms of functionally graded nanotubes", Int. J. Non-Linear Mech., 103513. https://doi.org/10.1016/j.ijnonlinmec.2020.103513.
- Shakhlavi, S.J, Shahrokh, H.H. and Reza, N. (2020b), "Investigation of nonlinear torsional oscillations on functionally graded nano-rod", The Biennial Int Conf on Exp Solid Mech, in IUST.
- Shakhlavi, S.J. (2023), "On nonlinear damping effects with nonlinear temperature-dependent properties for an axial thermos-viscoelastic rod", Int. J. Non-Linear Mech., 153, 104418. https://doi.org/10.1016/j.ijnonlinmec.2023.104418.
- Shakhlavi, S.J. (2024a), "Nonlinear nonlocal damping effects under magnetic loads of a ferromagnetic-viscoelastic nanotube exposed to a nonlinear elastic medium with nonlocal viscosity", Commun. Nonlinear Sci. Numer. Simul., 130, 107690. https://doi.org/10.1016/j.cnsns.2023.107690.
- Shakhlavi, S.J. and Nazemnezhad, R. (2024b), "Study on derivation from large amplitude size dependent internal resonances of homogeneous and FG rod-types", Adv. Nano Res, 16(2), 111-125. https://doi.org/10.12989/anr.2024.16.2.111.
- Shakhlavi, S.J. and Nazemnezhad, R. (2024c), "Comprehensive study of internal modals interactions: Comparison of various axial nonlinear beam theories", Adv. Nano Res, 16(3), 273-288. https://doi.org/10.12989/anr.2024.16.3.273.
- Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2022a), "Thermal stress effects on size-dependent nonlinear axial vibrations of nanorods exposed to magnetic fields surrounded by nonlinear elastic medium", J. Therm. Stress., 45(2),139-153. https://doi.org/10.1080/01495739.2021.2003275.
- Shakhlavi, S.J., Hosseini-Hashemi, S. and Nazemnezhad, R. (2022b), "Nonlinear nano-rod-type analysis of internal resonances and geometrically considering nonlocal and inertial effects in terms of Rayleigh axial vibrations", Eur. Phys. J. Plus, 137(4), 1-20. https://doi.org/10.1140/epjp/s13360-022-02594-x.
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.
- Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater Des., 30(3), 741-74., https://doi.org/10.1016/j.matdes.2008.05.015.
- Striz, A.G., Wang, X. and Bert, C.W. (1995), "Harmonic differential quadrature method and applications to analysis of structural components", Acta Mech., 111(1), 85-94. https://doi.org/10.1007/BF01187729.
- Yadav, A., Amabili, M., Panda, S.K. and Dey, T. (2019), "Nonlinear vibration response of functionally graded circular cylindrical shells subjected to thermo-mechanical loading", Compos Struct, 229, 111430. https://doi.org/10.1016/j.compstruct.2019.111430.
- Yang, J.E., Park, W.H., Kim, C.J., Kim, Z.H. and Jo, M.H. (2008), "Axially graded heteroepitaxy and Raman spectroscopic characterizations of Si 1- x Ge x nanowires", App. Phy. Lett., 92(26), 263111. https://doi.org/10.1063/1.2939564.