• Title/Summary/Keyword: AFG nanorod

Search Result 3, Processing Time 0.016 seconds

Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory

  • Nazemnezhad, Reza;Kamali, Kamran
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.749-758
    • /
    • 2018
  • Free axial vibration of axially functionally graded (AFG) nanorods is studied by focusing on the inertia of lateral motions and shear stiffness effects. To this end, Bishop's theory considering the inertia of the lateral motions and shear stiffness effects and the nonlocal theory considering the small scale effect are used. The material properties are assumed to change continuously through the length of the AFG nanorod according to a power-law distribution. Then, nonlocal governing equation of motion and boundary conditions are derived by implementing the Hamilton's principle. The governing equation is solved using the harmonic differential quadrature method (HDQM), After that, the first five axial natural frequencies of the AFG nanorod with clamped-clamped end condition are obtained. In the next step, effects of various parameters like the length of the AFG nanorod, the diameter of the AFG nanorod, material properties, and the nonlocal parameter value on natural frequencies are investigated. Results of the present study can be useful in more accurate design of nano-electro-mechanical systems in which nanotubes are used.

Internal modals interactions analysis in terms of AFG nanorods based on Rayleigh model of nonlinear nonlocal axial behaviour

  • Somaye Jamali Shakhlavi;Shahrokh Hosseini Hashemi;Reza Nazemnezhad
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.557-569
    • /
    • 2024
  • Nonlinear internal modals interactions analysis of axially functionally graded nanorods is evaluated on the basis of nonlocal elasticity theory and Rayleigh beam model for the first time. Functionally graded materials can be determined as nonhomogeneous composites which are obtained by combining of two various materials in order to get a new ideal material. In this research, material properties of nanorods are supposed to be calmly varied along the axial direction. Hamilton's principle is used to derive the equations with consideration of Von-Kármán's geometrically nonlinearity. Harmonic Differential Quadrature (HDQ) and Multiple Scale (MS) solution techniques are used to derive an approximate-analytic solution to the linear and nonlinear free axial vibration problem of non-classical nanorods for clamped-clamped and clamped-free boundary conditions. A parametric study is carried out to indicate the effects of index of AFG, aspect ratio, mode number, internal resonances and nonlinear amplitude on nonlinear nonlocal frequencies of axially functionally graded nanorods. Also, the effects of nonlocal and nonlinear coefficients and AFG index on relationships of internal resonances have been investigated. The presented theatrical-semi analytical model has the ability to predict very suitable results for extracting the internal modal interactions in the AFG nanorod.

Study on derivation from large-amplitude size dependent internal resonances of homogeneous and FG rod-types

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.111-125
    • /
    • 2024
  • Recently, a lot of research has been done on the analysis of axial vibrations of homogeneous and FG nanotubes (nanorods) with various aspects of vibrations that have been fully mentioned in history. However, there is a lack of investigation of the dynamic internal resonances of FG nanotubes (nanorods) between them. This is one of the essential or substantial characteristics of nonlinear vibration systems that have many applications in various fields of engineering (making actuators, sensors, etc.) and medicine (improving the course of diseases such as cancers, etc.). For this reason, in this study, for the first time, the dynamic internal resonances of FG nanorods in the simultaneous presence of large-amplitude size dependent behaviour, inertial and shear effects are investigated for general state in detail. Such theoretical patterns permit as to carry out various numerical experiments, which is the key point in the expansion of advanced nano-devices in different sciences. This research presents an AFG novel nano resonator model based on the axial vibration of the elastic nanorod system in terms of derivation from large-amplitude size dependent internal modals interactions. The Hamilton's Principle is applied to achieve the basic equations in movement and boundary conditions, and a harmonic deferential quadrature method, and a multiple scale solution technique are employed to determine a semi-analytical solution. The interest of the current solution is seen in its specific procedure that useful for deriving general relationships of internal resonances of FG nanorods. The numerical results predicted by the presented formulation are compared with results already published in the literature to indicate the precision and efficiency of the used theory and method. The influences of gradient index, aspect ratio of FG nanorod, mode number, nonlinear effects, and nonlocal effects variations on the mechanical behavior of FG nanorods are examined and discussed in detail. Also, the inertial and shear traces on the formations of internal resonances of FG nanorods are studied, simultaneously. The obtained valid results of this research can be useful and practical as input data of experimental works and construction of devices related to axial vibrations of FG nanorods.