Acknowledgement
This research was conducted in 2020 with the support of the Ministry of Education and the Korea Research Foundation (NRF-2020S1A3A2A02093277).
References
- Ahmad, S. N., and Laroche, M. (2015). How do expressed emotions affect the helpfulness of a product review? Evidence from reviews using latent semantic analysis. International Journal of Electronic Commerce, 20(1), 76-111. https://doi.org/10.1080/10864415.2016.1061471
- Baek, H., Ahn, J., and Choi, Y. (2012). Helpfulness of online consumer reviews: Readers' objectives and review cues. International Journal of Electronic Commerce, 17(2), 99-126. https://doi.org/10.2753/JEC1086-4415170204
- Banerjee, S., and Chua, A. Y. (2019). Trust in online hotel reviews across review polarity and hotel category. Computers in Human Behavior, 90, 265-275. https://doi.org/10.1016/j.chb.2018.09.010
- Banerjee, S., Chua, A. Y., and Kim, J. J. (2017). Don't be deceived: Using linguistic analysis to learn how to discern online review authenticity. Journal of the Association for Information Science and Technology, 68(6), 1525-1538. https://doi.org/10.1002/asi.23784
- Berger, J., and Milkman, K. L. (2012). What makes online content viral? Journal of Marketing Research, 49(2), 192-205. https://doi.org/10.1509/jmr.10.0353
- Bird, S., Klein, E., and Loper, E. (2009). Natural Language Processing with Python: Analyzing Text with The Natural Language Toolkit. O'Reilly Media, Inc.
- BrightLocal. (2022). Local consumer review survey 2022, Retrieved from https://www.brightlocal.com/research/local-consumer-review-survey/
- Callan, R. J. (1998). Attributional analysis of customers' hotel selection criteria by UK grading scheme categories. Journal of Travel Research, 36(3), 20-34. https://doi.org/10.1177/004728759803600303
- Cao, Q., Duan, W., and Gan, Q. (2011). Exploring determinants of voting for the "helpfulness" of online user reviews: A text mining approach. Decision Support Systems, 50(2), 511-521. https://doi.org/10.1016/j.dss.2010.11.009
- Chen, S. Y., Hsu, C. C., Kuo, C. C., and Ku, L. W. (2018). Emotionlines: An emotion corpus of multi-party conversations. arXiv preprint. arXiv: 1802.08379.
- Chua, A. Y., and Banerjee, S. (2016). Helpfulness of user-generated reviews as a function of review sentiment, product type and information quality. Computers in Human Behavior, 54, 547-554. https://doi.org/10.1016/j.chb.2015.08.057
- Clark, K., Luong, M. T., Le, Q. V., and Manning, C. D. (2020). ELECTRA: Pre-training text encoders as discriminators rather than generators. arXiv preprint. arXiv:2003.10555.
- Craciun, G., and Moore, K. (2019). Credibility of negative online product reviews: Reviewer gender, reputation and emotion effects. Computers in Human Behavior, 97, 104-115. https://doi.org/10.1016/j.chb.2019.03.010
- Craciun, G., Zhou, W., and Shan, Z. (2020). Discrete emotions effects on electronic word-of-mouth helpfulness: The moderating role of reviewer gender and contextual emotional tone. Decision Support Systems, 130, 113226. https://doi.org/10.1016/j.dss.2019.113226
- Devlin, J., Chang, M. W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint. arXiv:1810.04805.
- Dillard, J. P., Plotnick, C. A., Godbold, L. C., Freimuth, V. S., and Edgar, T. (1996). The multiple affective outcomes of AIDS PSAs: Fear appeals do more than scare people. Communication Research, 23(1), 44-72. https://doi.org/10.1177/009365096023001002
- Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3-4), 169-200. https://doi.org/10.1080/02699939208411068
- Fan, W. (2021). What makes consumer perception of online review helpfulness: synthesizing the past to guide future research. In Proceedings of the 54th Hawaii International Conference on System Sciences, 2738.
- Ferrer, R., Klein, W., Lerner, J., Reyna, V., and Keltner, D. (2016). Emotions and health decision making. In C. Roberto and I. Kawachi (Eds.), Behavioral economics and Public Health (pp. 101-132). Cambridge, MA: Harvard University Press.
- Filieri, R. (2015). What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM. Journal of Business Research, 68(6), 1261-1270. https://doi.org/10.1016/j.jbusres.2014.11.006
- Filieri, R., Galati, F., and Raguseo, E. (2021). The impact of service attributes and category on eWOM helpfulness: An investigation of extremely negative and positive ratings using latent semantic analytics and regression analysis. Computers in Human Behavior, 114, 106527. https://doi.org/10.1016/j.chb.2020.106527
- Filieri, R., Raguseo, E., and Vitari, C. (2018). When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type. Computers in Human Behavior, 88, 134-142. https://doi.org/10.1016/j.chb.2018.05.042
- Fontaine, J. R., Scherer, K. R., Roesch, E. B., and Ellsworth, P. C. (2007). The world of emotions is not two-dimensional. Psychological science, 18(12), 1050-1057. https://doi.org/10.1111/j.1467-9280.2007.02024.x
- Galati, F., and Galati, R. (2019). Cross-country analysis of perception and emphasis of hotel attributes. Tourism Management, 74, 24-42. https://doi.org/10.1016/j.tourman.2019.02.011
- Garcia, D., and Schweitzer, F. (2011). Emotions in product reviews--empirics and models. In 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing (pp. 483-488).
- Ghose, A., and Ipeirotis, P. G. (2010). Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics. IEEE Transactions on Knowledge and Data Engineering, 23(10), 1498-1512. https://doi.org/10.1109/TKDE.2010.188
- Hardeniya, T., and Borikar, D. A. (2016). Dictionary based approach to sentiment analysis-a review. International Journal of Advanced Engineering, Management and Science, 2(5), 239438.
- Hu, T., Wang, S., Luo, W., Zhang, M., Huang, X., Yan, Y., Liu, R., Ly, K., Kacker, V., She, B., and Li, Z. (2021). Revealing Public Opinion Towards COVID-19 Vaccines With Twitter Data in the United States: Spatiotemporal Perspective. Journal of Medical Internet Research, 23(9), e30854. https://doi.org/10.2196/30854
- Huang, A. H., Chen, K., Yen, D. C., and Tran, T. P. (2015). A study of factors that contribute to online review helpfulness. Computers in Human Behavior, 48, 17-27. https://doi.org/10.1016/j.chb.2015.01.010
- Janiesch, C., Zschech, P., and Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695. https://doi.org/10.1007/s12525-021-00475-2
- Jiang, Z., and Benbasat, I. (2007). The effects of presentation formats and task complexity on online consumers' product understanding. Mis Quarterly, 475-500.
- Karimi, S., and Wang, F. (2017). Online review helpfulness: Impact of reviewer profile image. Decision Support Systems, 96, 39-48. https://doi.org/10.1016/j.dss.2017.02.001
- Khotimah, D. A. K., and Sarno, R. (2019). Sentiment analysis of hotel aspect using probabilistic latent semantic analysis, word embedding and LSTM. International Journal of Intelligent Engineering and Systems, 12(4), 275-290. https://doi.org/10.22266/ijies2019.0831.26
- Kim, J., and Gupta, P. (2012). Emotional expressions in online user reviews: How they influence consumers' product evaluations. Journal of Business Research, 65(7), 985-992. https://doi.org/10.1016/j.jbusres.2011.04.013
- Kim, T., and Vossen, P. (2021). EmoBERTa: Speaker-Aware Emotion Recognition in Conversation with RoBERTa. arXiv preprint. arXiv:2108.12009.
- Kim, W. G., Li, J. J., and Brymer, R. A. (2016). The impact of social media reviews on restaurant performance: The moderating role of excellence certificate. International Journal of Hospitality Management, 55, 41-51. https://doi.org/10.1016/j.ijhm.2016.03.001
- Lazarus, R. S. (1991). Emotion and Adaptation. Oxford University Press.
- Lee, M., Jeong, M., and Lee, J. (2017). Roles of negative emotions in customers' perceived helpfulness of hotel reviews on a user-generated review website: A text mining approach. International Journal of Contemporary Hospitality Management, 29(2), 762-783. https://doi.org/10.1108/IJCHM-10-2015-0626
- Lerner, J. S., and Keltner, D. (2001). Fear, anger, and risk. Journal of Personality and Social Psychology, 81(1), 146. https://doi.org/10.1037/0022-3514.81.1.146
- Li, H., Liu, H., and Zhang, Z. (2020). Online persuasion of review emotional intensity: A text mining analysis of restaurant reviews. International Journal of Hospitality Management, 89, 102558. https://doi.org/10.1016/j.ijhm.2020.102558
- Li, Y., Su, H., Shen, X., Li, W., Cao, Z., and Niu, S. (2017). DailyDialog: A manually labelled multi-turn dialogue dataset. arXiv preprint. arXiv:1710.03957.
- Lin, T. M., Lu, K. Y., and Wu, J. J. (2012). The effects of visual information in eWOM communication. The Journal of Research in Indian Medicine, 6(1), 7-26. https://doi.org/10.1108/17505931211241341
- Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). RoBERTa: A robustly optimized bert pretraining approach. arXiv preprint. arXiv:1907.11692.
- Liu, Z., and Park, S. (2015). What makes a useful online review? Implication for travel product websites. Tourism Management, 47, 140-151. https://doi.org/10.1016/j.tourman.2014.09.020
- Ludwig, S., De Ruyter, K., Friedman, M., Bruggen, E. C., Wetzels, M., and Pfann, G. (2013). More than words: The influence of affective content and linguistic style matches in online reviews on conversion rates. Journal of Marketing, 77(1), 87-103. https://doi.org/10.1509/jm.11.0560
- Ma, Y., Xiang, Z., Du, Q., and Fan, W. (2018). Effects of user-provided photos on hotel review helpfulness: An analytical approach with deep leaning. International Journal of Hospitality Management, 71, 120-131. https://doi.org/10.1016/j.ijhm.2017.12.008
- Mohammad, S., and Turney, P. (2010). Emotions evoked by common words and phrases: Using mechanical turk to create an emotion lexicon. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text (pp. 26-34).
- Mudambi, S. M., and Schuff, D. (2010). What makes a helpful review? A study of customer reviews on amazon. Com. MIS Quarterly, 34(1), 185-200. https://doi.org/10.2307/20721420
- Nabi, R. (2002). Anger, fear, uncertainty, and attitudes: A test of the cognitive-functional model. Communication Monographs, 69(3), 204-216. https://doi.org/10.1080/03637750216541
- Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469. https://doi.org/10.1177/002224378001700405
- Otterbacher, J. (2009). 'Helpfulness' in online communities: a measure of message quality. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 955-964).
- Pan, Y., and Zhang, J. Q. (2011). Born unequal: A study of the helpfulness of user-generated product reviews. Journal of Retailing, 87(4), 598-612. https://doi.org/10.1016/j.jretai.2011.05.002
- Park, D. H., and Lee, J. (2008). EWOM overload and its effect on consumer behavioral intention depending on consumer involvement. Electronic Commerce Research and Applications, 7(4), 386-398. https://doi.org/10.1016/j.elerap.2007.11.004
- Peng, C., Yin, D., Wei, C., and Zhang, H. (2014). How and when review length and emotional intensity influence review helpfulness: Empirical evidence from epinions.com. In Proceedings of Thirty Fifth International Conference on Information Systems (pp. 1-16).
- Pennebaker, J. W., Boyd, R. L., Jordan, K., and Blackburn, K. (2015). Linguistic Inquiry and WORD COUNT: LIWC2015. Austin, TX: Pennebaker Conglomerates.
- Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria, E., and Mihalcea, R. (2018). MELD: A multimodal multi-party dataset for emotion recognition in conversations. arXiv preprint. arXiv: 1810.02508.
- Provost, F., and Kohavi, R. (1998). Glossary of terms. Journal of Machine Learning, 30(2-3), 271-274. https://doi.org/10.1023/A:1017181826899
- Qazi, A., Syed, K. B. S., Raj, R. G., Cambria, E., Tahir, M., and Alghazzawi, D. (2016). A concept-level approach to the analysis of online review helpfulness. Computers in Human Behavior, 58, 75-81. https://doi.org/10.1016/j.chb.2015.12.028
- Racherla, P., and Friske, W. (2012). Perceived 'usefulness' of online consumer reviews: An exploratory investigation across three services categories. Electronic Commerce Research and Applications, 11(6), 548-559. https://doi.org/10.1016/j.elerap.2012.06.003
- Ren, G., and Hong, T. (2019). Examining the relationship between specific negative emotions and the perceived helpfulness of online reviews. Information Processing and Management, 56(4), 1425-1438. https://doi.org/10.1016/j.ipm.2018.04.003
- Rhee, H. T., and Yang, S. B. (2015). Does hotel attribute importance differ by hotel? Focusing on hotel star-classifications and customers' overall ratings. Computers in Human Behavior, 50, 576-587. https://doi.org/10.1016/j.chb.2015.02.069
- Rozin, P., and Royzman, E. B. (2001). Negativity bias, negativity dominance, and contagion. Personality and Social Psychology Review, 5(4), 296-320. https://doi.org/10.1207/S15327957PSPR0504_2
- Salehan, M., and Kim, D. J. (2016). Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics. Decision Support Systems, 81, 30-40. https://doi.org/10.1016/j.dss.2015.10.006
- Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint. arXiv: 1910.01108.
- Shah, A. M., and Lee, K. (2022). The role of emotions intensity in helpfulness of online physician reviews. Intelligent Automation and Soft Computing, 31(3), 1719-1735. https://doi.org/10.32604/iasc.2022.019666
- Silva, R. (2015). Multimarket contact, differentiation, and prices of chain hotels. Tourism Management, 48, 305-315. https://doi.org/10.1016/j.tourman.2014.11.006
- Simons, T., and Hinkin, T. (2001). The effect of employee turnover on hotel profits: A test across multiple hotels. Cornell Hotel and Restaurant Administration Quarterly, 42(4), 65-69. https://doi.org/10.1016/S0010-8804(01)80046-X
- Smith, C. A., and Ellsworth, P. C. (1985). Patterns of cognitive appraisal in emotion. Journal of ,ersonality and Social Psychology, 48(4), 813-838. https://doi.org/10.1037/0022-3514.48.4.813
- Sniezek, J. A., and Van Swol, L. M. (2001). Trust, confidence, and expertise in a judge-advisor system. Organizational Behavior and Human Decision Processes, 84(2), 288-307. https://doi.org/10.1006/obhd.2000.2926
- Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C. (2018). A survey on deep transfer learning. International Conference on Artificial Neural Networks, 270-279.
- Tiedens, L. Z., and Linton, S. (2001). Judgment under emotional certainty and uncertainty: The effects of specific emotions on information processing. Journal of Personality and Social Psychology, 81(6), 973-988. https://doi.org/10.1037/0022-3514.81.6.973
- Veall, M. R., and Zimmermann, K. F. (1996). Pseudo-R2 measures for some common limited dependent variable models. Journal of Economic Surveys, 10(3), 241-259. https://doi.org/10.1111/j.1467-6419.1996.tb00013.x
- Wang, X., Tang, L. R., and Kim, E. (2019). More than words: Do emotional content and linguistic style matching matter on restaurant review helpfulness? International Journal of Hospitality Management, 77, 438-447. https://doi.org/10.1016/j.ijhm.2018.08.007
- Weiss, A. M., Lurie, N. H., and MacInnis, D. J. (2008). Listening to strangers: whose responses are valuable, how valuable are they, and why? Journal of marketing Research, 45(4), 425-436. https://doi.org/10.1509/jmkr.45.4.425
- Westbrook, R. A., and Oliver, R. L. (1991). The dimensionality of consumption emotion patterns and consumer satisfaction. Journal of Consumer Research, 18(1), 84-91. https://doi.org/10.1086/209243
- Xie, H. J., Miao, L., Kuo, P. J., and Lee, B. Y. (2011). Consumers' responses to ambivalent online hotel reviews: The role of perceived source credibility and pre-decisional disposition. International Journal of Hospitality Management, 30(1), 178-183. https://doi.org/10.1016/j.ijhm.2010.04.008
- Yan, X., Khan, S., and Shah, S. J. (2020). Exploring the impact of review and service-related signals on online physician review helpfulness: A multi-methods approach. In Proceedings of Twenty-Fourth Pacific Asia Conference on Information Systems (pp. 1-14).
- Yang, S., Zhou, C., and Chen, Y. (2021). Do topic consistency and linguistic style similarity affect online review helpfulness? An elaboration likelihood model perspective. Information Processing and Management, 58(3), 102521. https://doi.org/10.1016/j.ipm.2021.102521
- Yang, S., Yao, J., and Qazi, A. (2020). Does the review deserve more helpfulness when its title resembles the content? Locating helpful reviews by text mining. Information Processing and Management, 57(2), 102179. https://doi.org/10.1016/j.ipm.2019.102179
- Yin, D., Bond, S. D., and Zhang, H. (2014). Anxious or angry? Effects of discrete emotions on the perceived helpfulness of online reviews. MIS Quarterly, 38(2), 539-560. https://doi.org/10.25300/MISQ/2014/38.2.10
- Yin, D., Bond, S. D., and Zhang, H. (2017). Keep your cool or let it out: Nonlinear effects of expressed arousal on perceptions of consumer reviews. Journal of Marketing Research, 54(3), 447-463. https://doi.org/10.1509/jmr.13.0379
- Zhou, S., and Guo, B. (2017). The order effect on online review helpfulness: A social influence perspective. Decision Support Systems, 93, 77-87. https://doi.org/10.1016/j.dss.2016.09.016
- Zhu, L., Yin, G., and He, W. (2014). Is this opinion leader's review useful? Peripheral cues for online review helpfulness. Journal of Electronic Commerce Research, 15(4), 267-280.