DOI QR코드

DOI QR Code

Tenebrio molitor의 개체수 밀도가 발달 시간에 대한 영향

Effect of Population Density on Development Time of Tenebrio molitor

  • 최다연 (공주대학교 산업과학대학 원예학과 ) ;
  • 윤지윤 (공주대학교 산업과학대학 원예학과 ) ;
  • 김서윤 (공주대학교 산업과학대학 원예학과 ) ;
  • 이가은 (공주대학교 산업과학대학 원예학과 ) ;
  • 키라 바타르세 (캘리포니아 주립대학교 몬트레이베이 수학통계학과 ) ;
  • 스티븐 김 (캘리포니아 주립대학교 몬트레이베이 수학통계학과 ) ;
  • 김동섭 (공주대학교 산업과학대학 원예학과 )
  • Da Yeon Choi (Department of Horticulture, Kongju National University) ;
  • Ji Yun Yun (Department of Horticulture, Kongju National University) ;
  • Seo Yun Kim (Department of Horticulture, Kongju National University) ;
  • Ga Eun Lee (Department of Horticulture, Kongju National University) ;
  • Kyra Batarse (Department of Mathematics and Statistics, California State University) ;
  • Steven Kim (Department of Mathematics and Statistics, California State University) ;
  • Dong Sub Kim (Department of Horticulture, Kongju National University)
  • 투고 : 2024.04.20
  • 심사 : 2024.05.16
  • 발행 : 2024.07.31

초록

거저리는 식품으로 사용되기 때문에 유충기가 오래 지속되면 더 좋다. 반면에 거저리의 개체수 유지를 위해 성장을 가속화하기 위해서는 유충이 빨리 성충이 되면 더 좋다. 이 연구에서는 개체군 밀도가 거저리의 발달 시간에 미치는 영향을 구명하였다. 이를 위해 상단 7 cm, 하단 5 cm, 높이 3 cm 크기의 용기를 사용했다. 거저리는 용기당 1, 2, 5, 10, 20마리의 밀도로 용기에서 서식하였다. 용기에 밀기울 1 g을 넣고 거저리의 먹이 여부에 따라 라벨을 붙였다. 실험은 세 번 반복되었다. 모든 실험에서 개체군 밀도가 높을수록 유충에서 번데기로의 변환 시간이 짧았지만 번데기에서 성충으로 변환되는 시간은 크게 다르지 않았다. 또한 먹이가 있는 그룹에서 번데기로의 변환 시간이 단축되었지만, 성충으로 변환되는 시간에는 차이가 없었다. 이 연구 결과는 유충기를 연장하기 위해 더 낮은 밀도가 필요하고 더 빠른 속도로 성충이 필요하다면 밀도가 더 높아야 한다는 것을 보여주었다. 결론적으로 거저리의 발달 시간은 개체수 밀도에 의해 제어할 수 있을 것이다.

Mealworms are used as food, so it is preferable if the larval stage lasts longer. On the other hand, to accelerate the population growth of mealworms, it is preferable if the larvae become adults quickly. The purpose of this study is to explore the effects of population density on development time of mealworms. We used a container size of 7 cm at the top, 5 cm at the bottom, and 3 cm in height. Mealworms lived in the containers at densities of 1, 2, 5, 10, and 20 per container. The containers were bedded with 1 g of wheat bran and formed two groups, fed and not fed, at each density levels. The experiments were performed three times. In all of the experiments, higher population densities resulted in shorter transformation times from larva to pupa, but the time from pupa to imago was not significantly different. In addition, given the same density, the presence of food accelerated the time to transformation to pupa, but not to imago. The data supported that a lower density is needed to prolong the larval stage, and if adults are needed at a faster rate, the density should be higher. Therefore, we conclude that the development time of mealworms can be controlled by the density which is useful information for mealworm farmers.

키워드

참고문헌

  1. Agnew P., M. Hide, C. Sidobre, and Y. Michalakis 2002, A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol Entomol 27:396-402. doi:10.1046/j.1365-2311.2002.00430.x
  2. Bauerfeind S.S., and K. Fischer 2005, Effects of food stress and density in different life stages on reproduction in a butterfly. Oikos 111:514-524. doi:10.1111/j.0030-1299.2005.13888.x
  3. Connat L., J.P. Delbecque, I. Glitho, and J. Delachambre 1991, The onset of metamorphosis in Tenebrio molitor larvae (Insecta, Coleoptera) under grouped, isolated and starved conditions. J Insect Physiol 37:653-662. doi:10.1016/0022-1910(91)90042-X
  4. Deen N.E., S. Lamaj, F. Verrastro, V. Al Bitar, and L.F. Baldacchino 2021, Effects of two diets on adults' survival and productivity in mass-rearing of Tenebrio molitor (Coleaoptera: Tenebriodae). J Insects Food Feed 7:1149-1157. doi:10.3920/JIFF2020.0129
  5. Diamantidis A.D., C.S. Ioannou, C.T. Nakas, J.R. Carey, and N.T. Papadopoulos 2020, Differential response to larval crowding of a long- and a short-lived medfly biotype. J Evol Biol 33:329-341. doi:10.1111/jeb.13569
  6. Gibbs M., L.A. Lace, M.J. Jones, and A.J. Moore 2004, Intraspecific competition in the speckled wood butterfly Pararge aegeria: Effect of rearing density and gender on larval life history. J Insect Sci 4:16. doi:10.1093/jis/4.1.16
  7. Gimnig J.E., M. Ombok, S. Otieno, M.G. Kaufman, J.M. Vulule, and E.D. Walker 2002, Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. J Med Entomol 39:162-172. doi:10.1603/0022-2585-39.1.162
  8. Godfray H.C.J., P. Aveyard, T. Garnett, J.W. Hall, T.J. Key, et al. 2018, Meat consumption, health, and the environment. Science 361:eaam5324. doi:10.1126/science.aam5324
  9. Grambsch P., and T. Therneau 1994, Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515-526. doi:10.1093/biomet/81.3.515
  10. Heckmann L.H., J.L. Andersen, N. Gianotten, M. Calis, C.H. Fischer, and H. Calis 2018, Sustainable mealworm production for feed and food. In A Halloran, R Flore, P Vantomme, N Roos, eds, Edible Insects in Sustainable Food Systems. Springer, New York, NY, USA, pp 321-328. doi:10.1007/978-3-319-74011-9_19
  11. Henry Y., D. Renault, and H. Colinet 2018, Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. J Exp Biol 221:jeb169342. doi:10.1242/jeb.169342
  12. Hofmann T., S. Schmucker, M. Grashorn, and V. Stefanski 2021, Short- and long-term consequences of stocking density during rearing on the immune system and welfare of laying hens. Poult Sci 100:101243. doi:10.1016/j.psj.2021.101243
  13. Hwang H.S., J.K. Lee, T.K. Eom, T.J. Choi, and S.J. Rhim 2019, Influence of mixing density on behaviors of growing pigs. Ann Anim Resour Sci 30:18-24. doi:10.12718/AARS.2019.30.1.18
  14. Kim S.Y., J.B. Park, Y.B. Lee, H.J. Yoon, K.Y. Lee, and N.J. Kim 2015, Growth characteristics of mealworm Tenebrio molitor. J Seric Entomol Sci 53(1):1-5. doi:10.7852/jses.2015.53.1.1
  15. Kim S.Y., T.H. Chung, S.H. Kim, S. Song, and N.J. Kim 2014, Recycling agricultural wastes as feed for mealworm (Tenebrio molitor). Korean J Appl Entomol 53:367-373. doi:10.5656/KSAE.2014.10.0.043
  16. Klein J.P., and M.L. Moeschberger 2003, Survival analysis: Techniques for censored and truncated data, 2nd Ed. Springer, New York, USA. doi:10.1007/b97377
  17. Langston K., L. Selaledi, and A. Yusuf 2023, Evaluation of alternative substrates for rearing the yellow mealworm Tenebrio molitor (L). Int J Trop Insect Sci 43:1523-1530. doi:10.1007/s42690-023-01061-z
  18. Lee S., J.W. Park, M. Jeong, H.S. Jung, J. Kim, W.J. Kim, et al. 2023, Effects of rearing density stress on malformation and stress and immune related gene expression of juvenile olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci 56:380-387. doi:10.5657/KFAS.2023.0380
  19. Lemonnier P., and E.A. Ainsworth 2018, Crop responses to rising atmospheric [CO2] and global climate change. In SS Redden, R Yadav, eds, Food Security and Climate Change. John Wiley & Sons Ltd., Chichester, England, UK, pp 51-69. doi:10.1002/9781119180661.ch3
  20. Liu X., F. Dai, E. Guo, K. Li, L. Ma, L. Tian, et al. 2015, 20-Hydroxyecdysone (20E) primary response gene E93 modulates 20E signaling to promote Bombyx larval-pupal metamorphosis. J Biol Chem 290:27370-27383. doi:10.1074/jbc.m115.687293
  21. Loladze I. 2002, Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends Ecol Evol 17:457-461. doi:10.1016/S0169-5347(02)02587-9
  22. Loladze I. 2014, Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3:e02245. doi:10.7554/elife.02245
  23. Miassi Y.E. and K.F. Dossa 2023, Forecasting animal protein supply in Asia and Europe in light of climate change, population growth and land pressure. Trop Plant 2:22. doi:10.48130/TP-2023-0022
  24. Miglietta P., F. De Leo, M. Ruberti, and S. Massari 2015, Mealworms for food: A water footprint perspective. Water 2015, 7:6190-6203. doi:10.3390/w7116190
  25. Morales-Ramos J.A., and M.G. Rojas 2015, Effect of larval density on food utilization efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae). J Econ Entomol 108:2259-2267. doi:10.1093/jee/tov208
  26. Muriu S.M., T. Coulson, C.M. Mbogo, and H.C. Godfray 2013, Larval density dependence in Anopheles gambiae s.s., the major African vector of malaria. J Anim Ecol 82:166-174. doi:10.1111/1365-2656.12002
  27. Myers S.S., A. Zanobetti, I. Kloog, et al. 2014, Increasing CO2 threatens human nutrition. Nature 510:139-142. doi:10.1038/nature13179
  28. Myers S.S., K.R. Wessells, I. Kloog, A. Zanobetti, and J. Schwartz 2015, Effect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling study. Lancet Global Health 3:e639-e645. doi:10.1016/s2214-109x(15)00093-5
  29. Oonincx D.G. and I.J. De Boer 2012, Environmental impact of the production of mealworms as a protein source for humans - a life cycle assessment. PLoS ONE 7:e51145. doi:10.1371/journal.pone.0051145
  30. Oonincx D.G., J. Van Itterbeeck, M.J. Heetkamp, H. Van Den Brand, J.J. Van Loon, and A. Van Huis 2010, An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 5:e14445. doi:10.1371/journal.pone.0014445
  31. Park Y.K., Y.C. Choe, Y.B. Lee, S.H. Lee, J.S. Lee, and S.H. Kang 2012, Fecundity, life span, developmental periods and pupal weight of Tenebrio molitor L. (Coleoptera: Tenebrionidae). J Seric Entomol Sci 50:126-132. doi:10.7852/jses.2012.50.2.126
  32. Punzo F., and J.A. Mutchmor 1980, Effects of temperature, relative humidity and period of exposure on the survival capacity of Tenebrio molitor (Coleoptera: Tenebrionidae). J Kans Entomol Soc 53(2):260-270.
  33. Quennedey A., N. Aribi, C. Everaerts, and J.P. Delbecque 1995, Postembryonic development of Zophobas atratus Fab. (Coleoptera: Tenebrionidae) under crowded or isolated conditions and effects of juvenile hormone analogue applications. J Insect Physiol 41:143-152. doi:10.1016/0022-1910(94)00091-T
  34. R Core Team 2023, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/.
  35. Riddiford L.M. 2020, Rhodnius, golden oil, and Met: A history of juvenile hormone research. Front Cell Dev Biol 8:679. doi:10.3389/fcell.2020.00679
  36. Ritchie H. and M. Roser 2023, The world population is changing: For the first time there are more people over 64 than children younger than 5. Our World in Data.
  37. Saunders D.S., and A. Bee 1995, Effects of larval crowding on size and fecundity of the blow fly, Calliphora vicina (Diptera: Calliphoridae). Eur J Entomol 92:615-622.
  38. Semba R.D., R. Ramsing, N. Rahman, K. Kraemer, and M.W. Bloem 2021, Legumes as a sustainable source of protein in human diets. Glob Food Secur 28:100520. doi:10.1016/j.gfs.2021.100520
  39. Terashima J., K. Takaki, S. Sakurai, and M. Bownes 2005, Nutritional status affects 20-hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster. J Endocrinol 187:69-79. doi:10.1677/joe.1.06220
  40. Therneau T. 2023, A package for survival analysis in R. R package version 3.5-5, https://CRAN.R-project.org/package=survival
  41. Therneau T.M. and P.M. Grambsch 2000, Modeling survival data: Extending the Cox model. Springer, New York. ISBN 0-387-98784-3. doi:10.1007/978-1-4757-3294-8
  42. Tilman D. and M. Clark 2014, Global diets link environmental sustainability and human health. Nature 515:518-522. doi:10.1038/nature13959
  43. Valimaki P., S.M. Kivela, and M.I. Maenpaa 2013, Temperature- and density-dependence of diapause induction and its life history correlates in the geometrid moth Chiasmia clathrata (Lepidoptera: Geometridae). Evol Ecol 27:1217-1233. doi:10.1007/s10682-013-9657-8
  44. Weaver D.K. and J. McFarlane 1990, The effect of larval density on growth and development of Tenebrio molitor. J Insect Physiol 36:531-536. doi:10.1016/0022-1910(90)90105-O
  45. Zhu C., K. Kobayashi, I. Loladze, et al. 2018, Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci Adv 4:eaaq1012. doi:10.1126/sciadv.aaq1012