DOI QR코드

DOI QR Code

Molecular Dynamics Simulation Study on the Creep Behavior of Ultra-High-Molecular-Weight Polyethylene

초고분자량 폴리에틸렌 고분자의 크리프 거동 분자동역학 시뮬레이션 연구

  • Tae Hwan Oh (Department of Chemical Engineering, Yeungnam University) ;
  • Yeong Min Im (School of Advanced Organic Materials Engineering, Graduate School, Yeungnam University)
  • 오태환 (영남대학교 화학공학부) ;
  • 임영민 (영남대학교 대학원 유기신소재공학과)
  • Received : 2024.08.01
  • Accepted : 2024.08.24
  • Published : 2024.08.31

Abstract

Molecular dynamics (MD) simulations were used to elucidate the creep behavior of ultra-high molecular weight polyethylene (UHMWPE), a material critical for medical implants and high performance applications. Using the LAMMPS software and the General Amber Force Field (GAFF), UHMWPE chains with 500 repeat units were modeled. The simulation protocol included energy minimization, NVT and NPT ensemble equilibration, followed by application of creep conditions. Results showed that creep strain increased with simulation time and temperature, which was attributed to increased molecular mobility. The applied load magnitude correlated positively with creep strain, emphasizing the critical nature of load management. Investigation of polymer chain length effects revealed that shorter chains exhibited higher creep strain, likely due to increased molecular mobility and rearrangement capacity. In addition to providing fundamental insights into the mechanical behavior of UHMWPE, this study demonstrates the power of MD simulations in predicting material performance under various conditions. These findings have significant implications for the design and optimization of UHMWPE-based products, potentially revolutionizing their durability and performance in critical applications.

Keywords

Acknowledgement

본 연구는 산업통상자원부 산업기술혁신사업소재부품기술개발-전략핵심소재자립화기술개발기술개발사업(과제번호 20010685(총괄과제번호 20011465), 한국산업기술평가관리원)의 지원을 받아 수행된 과제로 이에 감사드립니다.

References

  1. W. D. Callister and D. G. Rethwisch, "Materials Science and Engineering: An Introduction", Wiley, 2018.
  2. S. M. Kurtz and A. A. Edidin, "UHMWPE Biomaterials Handbook: Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices", Academic Press, 2006.
  3. X. Chen, H. Zhang, and Y. Liu, "Creep Behavior of High-performance Polymers: A Review Based on Molecular Simulations", Polym. Sci. Series A, 2021, 63, 417-435.
  4. Y. Li, Q. Wu, J. Sun, and Z. Yang, "Recent Advances in the Molecular Dynamics Simulation of Polymeric Materials", J. Molecular Modeling, 2022, 28, 72.
  5. T. W. Smith and M. L. Robertson, "Predicting the Tensile Strength and Deformation Behavior of Polyethylene Using Molecular Dynamics Simulations", Polymer, 2020, 190, 122-130.
  6. R. Johnson and K. S. Katti, "Investigation of Wear Properties of UHMWPE Using Molecular Dynamics Simulations", J. Biomed. Mater. Res. Part B: Appl. Biomater., 2019, 107, 1726-1735.
  7. X. Zhang, Y. Liu, and X. Li, "Mechanical Properties of Polymer Nanocomposites Studied by Molecular Dynamics Simulation", Compos. Sci. Technol., 2018, 162, 55-62.
  8. S. Li, Y. Zhao, and Q. Wang, "Interfacial Behavior of Polymer Blends Investigated by Molecular Dynamics Simulations", Polymer, 2017, 108, 292-299.
  9. C. Williams and M. Gordon, "Anisotropic Mechanical Properties of Polymers Analyzed Through Molecular Dynamics Simulations", Macromolecules, 2016, 49, 4578-4585.
  10. J. Kim, H. Park, and S. Lee, "Study of Glass Transition Behavior of Polymers Using Molecular Dynamics Simulations", J. Phys. Chem. B, 2015, 119, 4553-4560.
  11. S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics", J. Comput. Phys., 1995, 117, 1-19.
  12. Y. Ko and H. Lee, "Creep Behavior of Polyethylene Characterized by Molecular Dynamics Simulation", Polym. Degrad. Stabil., 2014, 110, 257-263.
  13. Q. Zhou and H. Lu, "Molecular Dynamics Simulation of the Mechanical Properties of Cross-linked Polymers", Macromol. Theory Simul., 2013, 22, 400-407.
  14. S. L. Mayo, B. D. Olafson, and W. A. Goddard, "DREIDING: a generic force field for molecular simulations", J. Phys. Chem., 1990, 94, 8897-8909.
  15. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, "UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations", J. Am. Chem. Soc., 1992, 114, 10024-10035.
  16. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, "Development and Testing of a General Amber Force Field", J. Comput. Chem., 2004, 25, 1157-1174.