• Title/Summary/Keyword: LAMMPS

Search Result 9, Processing Time 0.03 seconds

Implementation of a LAMMPS-based Prototype for Multi-scale Modeling (LAMMPS 기반 멀티스케일 모델링 프로토타입 구현)

  • Cha, Kwangho;Jung, Youngkyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.200-203
    • /
    • 2012
  • 슈퍼 컴퓨터 시스템의 가용 계산 자원이 증가하면서 시뮬레이션 대상의 길이와 시뮬레이션 시간의 스케일을 확장할 수 있는 멀티스케일 모델링에 대한 관심이 높아지고 있다. 본 논문에서는 분자동역학과 전산 유체 역학을 결합하는 멀티스케일 모델링을 대상으로 두 분야의 대표적인 시뮬레이션 소프트웨어를 하나로 조합한 프로토타입의 개발 과정과 고려 사항을 소개한다.

Development of Multiscale Modeling Methods Coupling Molecular Dynamics and Stochastic Rotation Dynamics (분자동역학과 확률회전동역학을 결합한 멀티스케일 모델링 기법 개발)

  • Cha, Kwangho;Jung, Youngkyun
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.10
    • /
    • pp.534-542
    • /
    • 2014
  • Multiscale modeling is a new simulation approach which can manage different spatial and temporal scales of system. In this study, as part of multiscale modeling research, we propose the way of combining two different simulation methods, molecular dynamics(MD) and stochastic rotation dynamics(SRD). Our conceptual implementations are based on LAMMPS, one of the well-known molecular dynamics programs. Our prototype of multiscale modeling follows the form of the third party implementation of LAMMPS. It added MD to SRD in order to simulate the boundary area of the simulation box. Because it is important to guarantee the seamless simulation, we also designed the overlap zones and communication zones. The preliminary experimental results showed that our proposed scheme is properly worked out and the execution time is also reduced.

Molecular Dynamics Study of [C10mim][Br] Aggregation (분자동역학을 이용한 [C10mim][Br] 의 응집에 관한 연구)

  • Yoon, Hong-Min;Lee, Joon-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.873-876
    • /
    • 2012
  • Ionic liquids (ILs) existing in the liquid ion form under standard conditions show a unique properties. 1-10-Alkyl-3-methyl-imidazolium bromide ([C10mim][Br]) is one of the ILs that shows amphiphilic characteristics under specific conditions. This property enables it to function as a surfactant, and therefore, it finds applications in a wide range of areas. In this study, we tried to predict the behavior, especially the aggregation aspect, of [C10mim][Br] in an aqueous solution using molecular dynamics (MD) simulations. The canonical (NVT) ensemble was used to relax the system and trace the trajectory of atoms. Several case studies were simulated and the interaction among [C10mim]+, [Br]-, and water was analyzed using the radial distribution function of each atom. The density distribution function was also used for the structural analysis of the entire system. We used the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code for the present MD simulations.

Molecular dynamic studies for elastic constant of SiC crystal at high temperature (고온에서 SiC 결정의 탄성율에 대한 분자동역학연구)

  • Park, B.W.;Shin, H.R.;Kim, J.H.;Im, J.I.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.232-236
    • /
    • 2010
  • Silicon carbide (SiC) ceramics are widely used in the application of high-temperature structural devices due to their light weight as well as superior hardness, fracture toughness, and temperature stability. In this paper, we employed classical molecular dynamics simulations using Tersoff's potential to investigate the elastic constants of the SiC crystal at high temperature. The stress-strain characteristics of the SiC crystal were calculated with the LAMMPS software and the elastic constants of the SiC crystal were analyzed. Based on the stress-strain analysis, the SiC crystal has shown the elastic deformation characteristics at the low temperature region. But the slight plastic deformation behavior was shown as applied the high strain over $1,000^{\circ}C$. Also the elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa as increased the temperature to $1,250^{\circ}C$.

Defect structure classification of neutron-irradiated graphite using supervised machine learning

  • Kim, Jiho;Kim, Geon;Heo, Gyunyoung;Chang, Kunok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2783-2791
    • /
    • 2022
  • Molecular dynamics simulations were performed to predict the behavior of graphite atoms under neutron irradiation using large-scale atomic/molecular massively parallel simulator (LAMMPS) package with adaptive intermolecular reactive empirical bond order (AIREBOM) potential. Defect structures of graphite were compared with results from previous studies by means of density functional theory (DFT) calculations. The quantitative relation between primary knock-on atom (PKA) energy and irradiation damage on graphite was calculated. and the effect of PKA direction on the amount of defects is estimated by counting displaced atoms. Defects are classified into four groups: structural defects, energy defects, vacancies, and near-defect structures, where a structural defect is further subdivided into six types by decision tree method which is one of the supervised machine learning techniques.

A molecular dynamics simulation on the defect structure in silicon under indentation (분자동력학 해석을 이용한 인덴테이션시 실리콘 내부의 결함구조에 관한 연구)

  • Trandinh, Long;Ryu, Yong-Moon;Kang, Woo-Jong;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.9-13
    • /
    • 2011
  • ,In this paper, the symmetric axis parameter method, which was proposed to identify defects, dislocations and stacking fault, with perfect structures in the zinc-blende materials, was introduced as a way to distinguish between elastic and plastic deformation. LAMMPS, a molecular dynamics programme of Sandia National Laboratories, was used to perform nanoindentation simulation on silicon, a zinc-blende material. Defects in silicon (111) under spherical indentation showed the threefold pattern and the slip system in the form of ring crack. Also simulation results show good agreement with experimental results and existing theoretical analyses.

Temperature Dependence on Elastic Constant of SiC Ceramics (SiC 세라믹스 탄성률의 온도 의존성)

  • Im, Jong-In;Park, Byoung-Woo;Shin, Ho-Yong;Kim, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.491-497
    • /
    • 2010
  • In this paper, we employed the classical molecular dynamics simulations using Tersoff's potential to calculate the elastic constants of the silicon carbide (SiC) crystal at high temperature. The elastic constants of the SiC crystal were calculated based on the stress-strain characteristics, which were drawn by the simulation using LAMMPS software. At the same time, the elastic constants of the SiC ceramics were measured at different temperatures by impulse excitation testing (IET) method. Based on the simulated stress-strain results, the SiC crystal showed the elastic deformation characteristics at the low temperature region, while a slight plastic deformation behavior was observed at high strain over $1,000^{\circ}C$ temperature. The elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa by increasing the temperature from RT to $1,250^{\circ}C$. When compared to the experimental values of the SiC ceramics, the simulation results, which are unable to obtain by experiments, are found to be very useful to predict the stress-strain behaviors and the elastic constant of the ceramics at high temperature.

Molecular Dynamics Simulation on the Behavior of Si(001) Vicinal Surface by Using Empirical Tersoff Potential (Tersoff 포덴셜을 이용한 Si(001) 미사면 거동에 대한 분자동력학적 연구)

  • Choi, Jung-Hae;Cha, Pil-Ryung;Lee, Seung-Cheol;Oh, Jung Soo;Lee, Kwang-Ryeol
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • Molecular dynamic simulations on the structural evolution of the Si(001) vicinal surfaces, which are tilted with respect to [100] and [110] directions were performed by using the empirical Tersoff potential. Tersoff potential was implemented at LAMMPS code and confirmed to describe the properties of Si. When the steps are generated along [100] direction, symmetric dimer rows formed with respect to the step edges. On the other hand, when the steps are generated along [110] direction, alternating dimer rows form with respect to the step edges. The configurational differences between the two vicinal surfaces were discussed in terms of the surface diffusion and the possibility of preventing step bunching for the (001) vicinal surface tilted along [100] direction was suggested.

Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.261-277
    • /
    • 2020
  • The main objective of this research paper is to consider vibration analysis of vacancy defected graphene sheet as a nonisotropic structure via molecular dynamic and continuum approaches. The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defected graphene sheets. Molecular dynamic simulations have been performed to estimate the mechanical properties of graphene as a nonisotropic structure with single- and double- vacancy defects using open source well-known software i.e., large-scale atomic/molecular massively parallel simulator (LAMMPS). The interactions between the carbon atoms are modelled using Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. An isogeometric analysis (IGA) based upon non-uniform rational B-spline (NURBS) is employed for approximation of single-layered graphene sheets deflection field and the governing equations are derived using nonlocal elasticity theory. The dependence of small-scale effects, chirality and different defect types on vibrational characteristic of graphene sheets is investigated in this comprehensive research work. In addition, numerical results are validated and compared with those achieved using other analysis, where an excellent agreement is found. The interesting results indicate that increasing the number of missing atoms can lead to decrease the natural frequencies of graphene sheets. It is seen that the degree of the detrimental effects differ with defect type. The Young's and shear modulus of the graphene with SV defects are much smaller than graphene with DV defects. It is also observed that Single Vacancy (SV) clusters cause more reduction in the natural frequencies of SLGS than Double Vacancy (DV) clusters. The effectiveness and the accuracy of the present IGA approach have been demonstrated and it is shown that the IGA is efficient, robust and accurate in terms of nanoplate problems.