DOI QR코드

DOI QR Code

Compressive Properties of 3D Printed Foot Correction Pad Manufactured Using Thermoplastic Polyurethane

3D 프린팅 열가소성 폴리우레탄 발 교정 패드의 압축특성

  • Imjoo Jung (Department of Fashion and Textiles, Dong-A University) ;
  • Ye-eun Park (Department of Fashion and Textiles, Dong-A University) ;
  • Jing Li (Department of Fashion and Textiles, Dong-A University) ;
  • Sunhee Lee (Department of Fashion and Textiles, Dong-A University)
  • 정임주 (동아대학교 의상섬유학과) ;
  • 박예은 (동아대학교 의상섬유학과) ;
  • 이정 (동아대학교 의상섬유학과) ;
  • 이선희 (동아대학교 의상섬유학과)
  • Received : 2024.08.05
  • Accepted : 2024.08.24
  • Published : 2024.08.31

Abstract

Foot correction pads should distribute pressure on the foot to relieve pain, requiring suitable materials or structures. This study involved creating 3D models of eight types of foot correction pads based on wool felt products and manufacturing them using TPU through FFF 3D printing. The process included analyzing wool felt pads and manufacturing 3D-printed TPU pads, evaluating their size, printing time, and various design features. The study compared the weight and compressive properties of TPU metatarsal pads with wool pads. The weight analysis revealed that TPU pads were approximately 1.2 times heavier than wool pads due to their higher density and durability. Despite the added weight, TPU pads offered improved durability and better support characteristics. Compressive tests showed that TPU pads had a higher initial compressive modulus compared to wool pads, indicating better support when attached to the foot. Additionally, TPU pads exhibited superior compressive strength and resilience. Thus, 3D-printed TPU foot correction pads demonstrated better performance than wool pads, with higher initial compressive modulus and resilience, offering superior shock absorption and support. They are expected to have a longer lifespan than wool pads, making them a promising material for foot support applications.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(RS-2023-00272281).

References

  1. A. K. Ramanathan, P. Kiran, G. P. Arnold, W. Wang, and R. J. Abboud, "Repeatability of the Pedar-X® In-shoe Pressure Measuring System", Foot and Ankle Surgery, 2010, 16, 70-73.
  2. M. J. Coughlin, "Common Causes of Pain in the Forefoot in Adults", J. Bone Joint Surg. Br., 2000, 82-B, 781-790.
  3. K. Mannikko and J. Sahlman, "The Effect of Metatarsal Padding on Pain and Functional Ability in Metatarsalgia", Scandinavian J. Surgery, 2017, 106, 332-337.
  4. A. Malki, M. Baltasar Badaya, R. Dekker, G. J. Verkerke, and J. M. Hijmans, "Effects of Individually Optimized Rocker Midsoles and Self-adjusting Insoles on Plantar Pressure in Persons with Diabetes Mellitus and Loss of Protective Sensation", Diabetes Research and Clinical Practice, 2024, 207, 111077.
  5. M. Nouman, D. Y. R. Chong, S. Srewaradachpisal, and S. Chatpun, "The Effect of Customized Insole Pads on Plantar Pressure Distribution in a Diabetic Foot with Neuropathy: Material and Design Study Using Finite Element Analysis Approach", Appl. Sci., 2023, 13, 399.
  6. K. H. Ha, J. H. Lee, D.-M. Kang, and J.-S. Kwak, "A Study on Ergonomic Pad for Preventing Plantar Fasciitis Using FEA", Trans. Korean Soc. Mech. Eng. A, 2019, 43, 193-199.
  7. N. Guldemond, P. Leffers, N. Schaper, A. Sanders, F. Nieman, P. Willems, and G. Walenkamp, "The Effects of Insole Configurations on Forefoot Plantar Pressure and Walking Convenience in Diabetic Patients with Neuropathic Feet", Clin. Biomech., 2007, 22, 81-87.
  8. M. K. Hastings, M. J. Mueller, T. K. Pilgram, D. J. Lott, P. K. Commean, and J. E. Johnson, "Effect of Metatarsal Pad Placement on Plantar Pressure in People with Diabetes Mellitus and Peripheral Neuropathy", Foot Ankle Int., 2007, 28, 84-88.
  9. S. Ahmed, A. Barwick, P. Butterworth, and S. Nancarrow, "Footwear and Insole Design Features that Reduce Neuropathic Plantar Forefoot Ulcer Risk in People with Diabetes: A Systematic Literature Review", J. Foot Ankle Res., 2020, 13, 39.
  10. G. H. Lee, S. J. Han, S. G. Lee, and S. B. Park, "The Effect of Metatarsal Pad for Foot Pressure", Ann. Rehabil. Med., 2004, 28, 94-97.
  11. J.-K. Choi, I.-S. Park, H.-J. Lee, Y. Won, and J.-J. Kim, "Evaluation for Biomechanical Effects of Metatarsal Pad and Insole on Gait", Korean J. Sport Biomech., 2011, 21, 487-494.
  12. C.-Y. Hsu, C.-S. Wang, K.-W. Lin, M.-J. Chien, S.-H. Wei, and C.-S. Chen, "Biomechanical Analysis of the Flatfoot with Different 3D-printed Insoles on the Loer Extremities", Bioengineering, 2022, 9, 563.
  13. A. N. Sevina, Triyani, and S. Anatasia, "Effect of Metatarsal Pad Use on Spatiotemporal Gait Parameters on Forefoot Pain", J. Prosthet. Orthot. Sci. Technol., 2023, 2, 23-29.
  14. K. Chhikara, S. Gupta, and A. Chanda, "Development of a Novel Foot Orthosis for Plantar Pain Reduction", Mater. Today Proc., 2022, 62, 3532-3537.
  15. W.-L. Hsi, J.-H. Kang, and X.-X. Lee, "Optimum Position of Metatarsal Pad in Metatarsalgia for Pressure Relief", Am. J. Phys. Med. Rehabil., 2005, 84, 514-520.
  16. K. L. M. Koenraadt, N. M. Stolwijk, D. van den Wildenberg, J. Duysens, and N. L. W. Keijsers, "Effect of a Metatarsal Pad on the Forefoot During Gait", J. Am. Podiatr. Med. Assoc., 2012, 102, 18-24.
  17. S. Ryu and S.-K. Park, "The Changes in Ground Reaction Force and the Long-term Comfort during Walking by Wearing Modified Hardness of the Insole in the Areas of Forefoot and Rear-foot", J. Ergon. Soc. Korea, 2021, 40, 33-43.
  18. E. Jafarzadeh, R. Soheilifard, and A. Ehsani-Seresht, "Design Optimization Procedure for an Orthopedic Insole Having a Continuously Variable Stiffness/Shape to Reduce the Plantar Pressure in the Foot of a Diabetic Patient", Med. Eng. Phys., 2021, 98, 44-49.
  19. M. Hahni, A. Hirschmuller, and H. Baur, "The Effect of Foot Orthoses with Forefoot Cushioning or Metatarsal Pad on Forefoot Peak Plantar Pressure in Running", J. Foot Ankle Res., 2016, 9, 44.
  20. M. C. Iacob, D. Popescu, and T. G. Alexandru, "Printability of Thermoplastic Polyurethane with Low Shore a Hardness in the Context of Customized Insoles Production", U. P. B. Sic. Bull. Series D, 2024, 86, 95-106.
  21. Y. Luximon, J. Yu, and M. Zhang, "A Comparison of Metatarsal Pads on Pressure Redistribution in High Heeled Shoes", Res. J. Text. Apparel, 2014, 18, 40-48.
  22. J. Zhang, S. Lu, Y. Yang, Y. Liu, Y. Guo, and H. Wang, "Efficacy of Auxetic Lattice Structured Shoe Sole in Advancing Footwear Comfort-From the Perspective of Plantar Pressure and Contact Area", Front. Public Health, 2024, 12, 1412518.
  23. J. Zhang, S. Lu, Y. Lin, Y. Wang, X. Yi, and W. Fang, "Pressure-reducing Design of 3D-printed Diabetic Shoe Midsole Utilizing Auxetic Lattice Structure", Appl. Sci., 2024, 14, 5291.
  24. Y. F. Hudak, J.-S. Li, S. Cullum, B. M. Strzelecki, C. Richburg, G. E. Kaufman, D. Abrahamson, J. T. Heckman, B. Ripley, S. Telfer, W. R. Ledoux, B. C. Muir, and P. M. Aubin, "A Novel Workflow to Fabricate a Patient-specific 3D Printed Accommodative Foot Orthosis with Personalized Latticed Metamaterial", Med. Eng. Phys., 2022, 104, 103802.
  25. A. Kumar, S. Verma, and J.-Y. Jeng, "Supportless Lattice Structures for Energy Absorption Fabricated by Fused Deposition Modeling", 3D Print. Addit. Manuf., 2020, 7, 85-96.
  26. P.-C. Sun, S.-L. Shih, Y.-Y. Chen, K.-W. Lin, and C.-S. Chen, "Evaluation of Patients with Hallux Valgus Wearing a 3D-printed Orthosis during Walking", Appl. Sci., 2021, 11, 1275.
  27. M. Danko, J. Sekac, E. Dzivakova, J. Zivcak, and R. Hudak, "3D Printing of Individual Running Insoles - A Case Study", Orthop. Res. Rev., 2023, 15, 105-118.
  28. S. Koteswari and S. N. Yeole, "Development of 3D printed Orthotic Device for Flat Foot Problem", Mater. Today Proc., 2021, 44, 2435-2441.
  29. K. Chhikara, S. S. Sidhu, S. Gupta, S. Saharawat, C. Kataria, and A. Chanda, "Development and Effectiveness Testing of a Novel 3D-printed Multi-material Orthosis in Nurses with Plantar Foot Pain", Prosthesis, 2023, 5, 73-87.
  30. A. Harynska, I. Carayon, P. Kosmela, A. Brillowska-Dabrowska, M. Lapinski, J. Kucinska-Lipka, and H. Janik, "Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering", Materials, 2020, 13, 4457.
  31. Y. Han and J. Kim, "A Study on the Mechanical Properties of Knit Fabric Using 3D Printing -Focused on PLA, TPU Filament-", J. Fash. Bus., 2018, 22, 93-105.
  32. J. Jeong, H. Park, Y. Lee, J. Kang, and J. Chun, "Developing Parametric Design Fashion Products Using 3D Printing Technology", Fash Text., 2021, 8, 22.
  33. A. Harynska, I. Gubanska, J. Kucinska-Lipka, and H. Janik, "Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology", Polymers, 2018, 10, 1304.
  34. J. Xiao and Y. Gao, "The Manufacture of 3D Printing of Medical Grade TPU", Prog. Addit. Manuf., 2017, 2, 117-123.
  35. L. Rodriguez-Parada, S. Rosa, and P. F. Mayuet, "Influence of 3D-Printed TPU Properties for the Design of Elastic Products", Polymers, 2021, 13, 2519.
  36. N. Jirapongpathai, S. Sukthomya, P. Winyouvijit, K. Permpool, B. Inprang, F. R. Utama, and H. T. Nugroho, "Pilot Study: The Effects of Air-Filled Thermoplastic Polyurethane (TPU) in Foot Orthosis", Sci. Technol. Asia, 2022, 27, 209-216.
  37. S. Lee, "A Study on the Internal Support Structure for Insole of Small Scale Production Type Lead Using TPU Material", J. Integr. Des. Res., 2018, 17, 31-42.
  38. X. Chen and S. Lee, "Morphology and Compressive Property of 3D-printed 3-pointed Star Shape Prepared Using Lightweight Thermoplastic Polyurethane", Fiber. Polym., 2022, 23, 1779-1788.
  39. J. Lee, I. Jung, and S. Lee, "Analysis of Midsole Foot Pressure in Running Shoes with Different 3D Printed Bionic Structures", 2024 International Conference on Clothing and Textiles (ICCT), Jeju, Korea, 2024.
  40. L. Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye, C. Tu, D. Cohen-Or, and B. Chen, "Build-to-last: Strength to Weight 3D Printed Objects", ACM Trans. Graph., 2014, 33, 1-10.
  41. X. Zhu, J. Liu, H. Liu, J. Liu, Y. Yang, and H. Wang, "Effects of Midsole Hardness on the Mechanical Response Characteristics of the Plantar Fascia during Running", Bioengineering, 2023, 10, 533.