DOI QR코드

DOI QR Code

Green Approaches to Manufacturing Electrospun Silk Sericin Nanofibers

전기방사 실크 세리신 나노섬유 제조를 위한 친환경적 접근방식

  • Hoyoung Lee (Department of Digital Transformation (DX) Research, Korea High Tech Textile Research Institute) ;
  • Sanghoon Lee (Department of Composite Materials Research, Korea High Tech Textile Research Institute) ;
  • Mi Eun Lee (BJ SILK Co.) ;
  • Koo Jung (Department of Composite Materials Research, Korea High Tech Textile Research Institute)
  • 이호영 (한국섬유소재연구원 DX연구본부) ;
  • 이상훈 (한국섬유소재연구원 복합소재 연구본부) ;
  • 이미은 (비이제이실크) ;
  • 정구 (한국섬유소재연구원 복합소재 연구본부)
  • Received : 2024.06.28
  • Accepted : 2024.08.13
  • Published : 2024.08.31

Abstract

We developed a green method to extract sericin from silk waste without the use of chemical solvents. This technique not only ensures non-toxicity but also aligns with sustainable practices, minimizing environmental impact. The extracted sericin was mixed with polyvinyl alcohol (PVA) to create a stable polymeric spinning dope. By optimizing the sericin-to-solvent ratio to 1:30, we achieved the ideal viscosity and electrospinnability. Initial trials were conducted at a laboratory scale, followed by scaling up to a pilot plant. We systematically optimized the electrospinning parameters to ensure the consistent production of nanofibers. In pilot-scale experiments, the electrospinning of PVA loaded with 20 wt% sericin successfully replicated laboratory results. The produced nanofibers had an average diameter of approximately 700 nm. These silk sericin/PVA nanofibers are non-toxic and environmentally friendly, demonstrating potential for applications in skincare and medical textiles. Our research establishes a foundation for the scalable production of eco-friendly sericin composite nanofibers, contributing to the development of functional textiles.

Keywords

Acknowledgement

본 연구는 중소벤처기업부 중소기업기술혁신개발사업(S3242459) 지원으로 수행되었습니다.

References

  1. S. K. Chaudhri and N. K. Jain, "History of cosmetics", Asian J. Pharmaceutics, 2009, 3, 164.
  2. E. Yapar and S. Olgen, "Cosmetics and In Silico Approaches", J. Marmara University Institute of Health Science, 2014, 4, 253-260.
  3. N. Chaudhri, G. C. Soni, and S. K. Prajapati, "Nanotechnology, An Advance Tool for Nano-cosmetics Preparation", Int. J. Pharma Res. Rev., 2015, 4, 28-40.
  4. F. S. Poletto, R. C. S. Beck, S. S. Guterres, and A. R. Pohlmann, "Polymeric Nanocapsules: Concepts and Applications", Nanocosmetics and Nanomedicines, Springer, Berlin, 2011, pp.49-68.
  5. M. Ahmadi Bonakdar and D. Rodrigue, "Electrospinning: Processes, Structures, and Materials", Macromol, 2024, 4, 58-103.
  6. N. Jaramillo-Quiceno, E. Callone, S. Dire, C. Alvarez-Lopez, and A. Motta, "Boosting Sericin Extraction Through Alternative Silk Sources", Polym. J., 2021, 53, 1425-1437.
  7. M. C. Arango, Y. Montoya, M. S. Peresin, J. Bustamante, and C. Alvarez-Lopez, "Silk Sericin as a Biomaterial for Tissue Engineering: A Review", Int. J. Polym. Mater. Polym. Biomater., 2021, 70, 1115-1129.
  8. H. Kim, Y. Lim, J. H. Park, and Y. Cho, "Dietary Silk Protein, Sericin, Improves Epidermal Hydration with Increased Levels of Filaggrins and Free Amino Acids in NC/Nga Mice", British J. Nutrition, 2012, 108, 1726-1735.
  9. A. S. Silva, E. C. Costa, S. Reis, C. Spencer, R. C. Calhelha, S. P. Miguel, M. P. Ribeiro, L. Barros, J. A. Vaz, and P. Coutinho, "Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications", Polymers, 2022, 14, 4931.
  10. W. Wenlong, C. Mengshi, W. Jinhong, and W. Shaoyun, "Hypothermia Protection Effect of Antifreeze Peptides From Pigskin Collagen on Freeze-dried Streptococcus Thermophiles and Its Possible Action Mechanism", Food Sci. Technol., 2015, 63, 878-885.
  11. W. H. Wang, W. S. Lin, C. H. Shih, C. Y. Chen, S. H. Kuo, W. L. Li, and Y. S. Lin, "Functionality of Silk Cocoon (Bombyx mori L.) Sericin Extracts Obtained Through High-Temperature Hydrothermal Method", Materials, 2021, 14, 5314.
  12. Z. Wen, G. Xiaobao, L. Yang, S. Yang, Z. Shichao, Y. Jianyong, and D. Bin, "Environmentally Friendly Waterborne Polyurethane Nanofibrous Membranes by Emulsion Electrospinning for Waterproof and Breathable Textiles", Chem. Eng. J., 2022, 427, 130925.
  13. R. Bascou, J. Hardouin, M. A. B. Mlouka, E. Guenin, and A. Nesterenko, "Detailed Investigation on New Chemical-free Methods for Silk Sericin Extraction", Materials Today Communications, 2022, 33, 104491.
  14. B. Gamboa, J. Guerra, A. R. Osorio, and A. A. Catalina, "Sericin Applications: A Globular Silk Protein", Ingenieria y Competitividad. 2016, 18, 193-206.
  15. H. G. Lee, M. J. Jang, B. D. Park, and I. C. Um, "Structural Characteristics and Properties of Redissolved Silk Sericin", Polymers, 2023, 15, 3405.
  16. P. Mathieu, R. Bascou, F. S. Navarro Oliva, A. Nesterenko, A. T. Ngo, I. Lisiecki, E. Guenin, and F. Bedoui, "Electrospinning of Ultrafine Non-hydrolyzed Silk Sericin/PEO Fibers on PLA: a Bilayer Scaffold Fabrication", Polym. Eng. Sci., 2023, 63, 830-840.
  17. A. O. Vweza, C. G. Song, and K. T. Chong, "Liquid-Liquid Phase Separation in the Presence of Macromolecular Crowding and State-dependent Kinetics", Int. J. Mol. Sci., 2021, 22, 6675.
  18. N. H. Salunkhe, N. R. Jadhav, H. N. More, and A. D. Jadhav, "Screening of Drug-sericin Solid Dispersions for Improved Solubility and Dissolution", Int. J. Biol. Macromol., 2018, 107, 1683-1691.