DOI QR코드

DOI QR Code

Behavior of the Hybrid Melt Electrospinning/Blowing Process of PE Fibers with Hot Air Pressures and Voltages

전기방사/멜트블로운 하이브리드 공정을 통한 PE 웹의 제조에 관한 연구

  • Eunji Moon (School of Chemical Engineering, Pusan National University) ;
  • Jihwan Lim (School of Chemical Engineering, Pusan National University) ;
  • Minseo Kim (School of Chemical Engineering, Pusan National University) ;
  • Han Seong Kim (School of Chemical Engineering, Pusan National University)
  • 문은지 (부산대학교 응용화학공학부) ;
  • 임지환 (부산대학교 응용화학공학부) ;
  • 김민서 (부산대학교 응용화학공학부) ;
  • 김한성 (부산대학교 응용화학공학부)
  • Received : 2024.07.18
  • Accepted : 2024.08.13
  • Published : 2024.08.31

Abstract

Nonwoven fabric, created by bonding fibers through mechanical, thermal, or chemical methods, is extensively used in filtration, medical products, hygiene products, packaging materials, and construction materials. Among manufacturing methods, the melt-blown process produces fine fibers with high filtration efficiency but struggles with precise fiber control. To address this, we introduced the melt electrospinning/blown method using high voltage, enabling precise fiber diameter control and eliminating the need for solvents. Polyethylene (PE), with its chemical stability and physical strength, is ideal for nonwoven fabrics. In this study, we successfully produced high-quality PE webs using the melt electrospinning/blown process, demonstrating new potential for PE nonwoven fabric manufacturing and various industrial applications.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. D. Sajn Gorjanc and K. Kostajnsek, "Permeable Properties of Hygienic Nonwovens Bonded Using Mechanical, Chemical, and Thermal Techniques", Polymers, 2024, 16, 1132.
  2. A. Rawal, A. Majumdar, and V. Kumar, "Textile Architecture for Composite Materials: Back to Basics", Oxford Open Mater. Sci., 2023, 3, itad017.
  3. J. Lavoie, O. J. Rojas, S. A. Khan, and E. Shim, "Charge Protection in Electret Air Filtration Nonwoven Materials", Adv. Mater. Technol., 2024, 9, 2301670.
  4. B. Rogina-Car, J. Rogina, E. Govorcin Bajsic, and A. Budimir, "Propolis-Eco-friendly Natural Antibacterial Finish for Nonwoven Fabrics for Medical Application", J. Ind. Text., 2018, 49, 1100-1119.
  5. M. A. Imran, M. Q. Khan, A. Salam, and A. Ahmad, "Cotton in Nonwoven Products", "Cotton Science and Processing Technology", Textile Science and Clothing Technology, Springer, 2020, pp.305-332.
  6. P. Manickam and P. Kandhavadivu, "Development of Banana Nonwoven Fabric for Eco-friendly Packaging Applications of Rural Agriculture Sector", J. Natural Fibers, 2020, 19, 3158-3170.
  7. V. Datsyuk, S. Trotsenko, K. Peikert, K. Hoflich, N. Wedel, C. Allar, T. Sick, V. Deinhart, S. Reich, and W. Krcmar, "Polystyrene Nanofibers for Nonwoven Porous Building Insulation Materials", Eng. Rep., 2019, 1, e12037.
  8. Z. Chen, Q. Zhao, J. Chen, T. Mei, W. Wang, M. Li, and D. Wang, "N-Halamine-Based Polypropylene Melt-Blown Nonwoven Fabric with Superhydrophilicity and Antibacterial Properties for Face Masks", Polymers, 2023, 15, 4335.
  9. Y. Xu, X. Zhang, D. Teng, T. Zhao, Y. Li, and Y. Zeng, "Multilayered Micro/nanofibrous Nonwovens for Functional Face Mask filter", Nano Res., 2022, 15, 7549-7558.
  10. K. Chen, A. Ghosal, A. L. Yarin, and B. Pourdeyhimi, "Modeling of Spunbond Formation Process of Polymer Nonwovens", Polymer, 2020, 187, 121902.
  11. M. S. Ozen, E. Sancak, and M. Akalin, "The Effect of Needle-punched Nonwoven Fabric Thickness on Electromagnetic Shielding Effectiveness", Text. Res. J., 2014, 85, 804-815.
  12. S. Sakthivel, S. Senthil Kumar, S. Mekonnen, and E. Solomon, "Thermal and Sound Insulation Properties of Recycled cotton/Polyester Chemical Bonded Nonwovens", J. Engineered Fibers and Fabrics, 2020, 15, 1558925020968819.
  13. F. Zuo, D. H. Tan, Z. Wang, S. Jeung, C. W. Macosko, and F. S. Bates, "Nanofibers from Melt Blown Fiber-in-Fiber Polymer Blends", ACS Macro Lett., 2013, 2, 301-305.
  14. C. Yang, X. Jiang, X. Gao, H. Wang, L. Li, N. Hussain, J. Xie, Z. Cheng, Z. Li, J. Yan, M. Zhong, and L. Zhao, "Saving 80% Polypropylene in Facemasks by Laser-Assisted Melt-Blown Nanofibers", Nano Lett, 2022, 22, 7212-7219.
  15. N. Hoda, F. Mert, F. Kara, H. G. Atasagun, and G. S. Bhat, "Effect of Process Parameters on Fiber Diameter and Fiber Distribution of Melt-Blown Polypropylene Microfibers Produced by Biax Line", Fiber. Polym., 2021, 22, 285-293.
  16. M. Peng, H. Jia, L. Jiang, Y. Zhou, and J. Ma, "Study on Structure and Property of PP/TPU Melt-blown Nonwovens", J. Text. Inst., 2018, 110, 468-475.
  17. M. Jafari, E. Shim, and A. Joijode, "Fabrication of Poly(lactic acid) Filter Media via the Meltblowing Process and Their Filtration Performances: A Comparative Study with Polypropylene Meltblown", Sep. Purif. Technol., 2021, 260, 118185.
  18. J. Lim, S. Choi, and H. S. Kim, "Behavior of Melt Electrospinning/Blowing for Polypropylene Fiber Fabrication", Polym. Int., 2022, 72, 120-125.
  19. L. H. Zhang, X. P. Duan, X. Yan, M. Yu, X. Ning, Y. Zhao, and Y.-Z. Long, "Recent Advances in Melt Electrospinning", RSC Adv., 2016, 6, 53400-53414.
  20. S. N. Malakhov and S. N. Chvalun, "Morphology, Structure and Properties of Nonwoven Materials Obtained by Melt Electrospinning of Polypropylene-polystyrene Blends", Polym. Eng. Sci., 2022, 62, 3503-3510.
  21. A. Wubneh, C. I. Kim, and C. Ayranci, "A Study on Theoretical Predictive Model and Experimental Findings of Melt-electrospinning Process", Polym. Adv. Technol., 2024, 35, e6310.
  22. M. M. Bubakir, H. Li, A. Barhoum, and W. Yang, "Advances in Melt Electrospinning Technique", Handbook of Nanofibers, Springer, 2018, pp.1-32.
  23. Y. Yesil and G. S. Bhat, "Porosity and Barrier Properties of Polyethylene Meltblown Nonwovens", J. Text. Inst., 2016, 108, 1035-1040.
  24. M. Barsbay and O. Guven, "RAFT Mediated Grafting of Poly(acrylic acid) (PAA) from Polyethylene/polypropylene (PE/PP) Nonwoven Fabric via Preirradiation", Polymer, 2013, 54, 4838-4848.
  25. M. A. Hidalgo-Salazar and J. P. Correa, "Mechanical and Thermal Properties of Biocomposites from Nonwoven Industrial Fique Fiber Mats with Epoxy Resin and Linear Low Density Polyethylene", Results in Physics, 2018, 8, 461-467.
  26. Y. Yesil and G. S. Bhat, "Structure and Mechanical Properties of Polyethylene Melt Blown Nonwovens", Int. J. Clothing Sci. Technol., 2016, 28, 780-793.