DOI QR코드

DOI QR Code

A Study of Microbial Contamination in Fresh-Cut and Ready-to-Eat Foods Purchased from Online Markets

온라인 판매 신선편의식품 및 즉석섭취식품의 미생물 오염도 연구

  • Hye-Sun Hwang (Busan Metropolitan City Institute of Health & Environment, Foodborne Diseases Inspection Team) ;
  • Jae-Hoon Jeong (Busan Metropolitan City Institute of Health & Environment, Foodborne Diseases Inspection Team) ;
  • Young-Hee Kwon (Busan Metropolitan City Institute of Health & Environment, Foodborne Diseases Inspection Team) ;
  • Ye-Jee Byun (Busan Metropolitan City Institute of Health & Environment, Foodborne Diseases Inspection Team) ;
  • Ji-Young Park (Busan Metropolitan City Institute of Health & Environment, Foodborne Diseases Inspection Team) ;
  • Ho-Cheol Yun (Busan Metropolitan City Institute of Health & Environment, Foodborne Diseases Inspection Team)
  • 황혜선 (부산광역시 보건환경연구원 감염병연구부 식중독검사팀) ;
  • 정재훈 (부산광역시 보건환경연구원 감염병연구부 식중독검사팀) ;
  • 권영희 (부산광역시 보건환경연구원 감염병연구부 식중독검사팀) ;
  • 변예지 (부산광역시 보건환경연구원 감염병연구부 식중독검사팀) ;
  • 박지영 (부산광역시 보건환경연구원 감염병연구부 식중독검사팀) ;
  • 윤호철 (부산광역시 보건환경연구원 감염병연구부 식중독검사팀)
  • Received : 2024.04.19
  • Accepted : 2024.08.16
  • Published : 2024.08.30

Abstract

This study aimed to examine the delivery conditions and microbial contamination of fresh-cut and ready-to-eat foods purchased from online markets between February and November 2023. Upon arrival, the average surface temperature of the products was 11.3℃. In the fresh-cut foods, the average number of total aerobic bacteria and coliforms was 4.5 log colony-forming units (CFU)/g and 1.2 log CFU/g, respectively, whereas in the ready-to-eat foods, these values were 10.6 log CFU/g and 1.2 log CFU/g, respectively. Pathogens, such as Staphylococcus aureus, Salmonella spp., Clostridium perfringens, Listeria monocytogenes, and pathogenic Escherichia coli were absent from all samples. Bacillus cereus was found in 2.7% of the fresh-cut foods and 0.9% of the ready-to-eat foods, with contamination levels averaging 0.05 log CFU/g and 0.01 log CFU/g, respectively. In the four samples in which B. cereus was detected, genetic testing of the six toxin genes produced by B. cereus revealed the presence of at least one enterotoxin gene, excluding the emetic toxin. L. monocytogenes was absent from ready-to-eat foods but was detected in 0.9% of fresh-cut foods. Analysis of the isolated L. monocytogenes confirmed the presence of six pathogenicity-related genes, including iap, indicating the potential risk of foodborne diseases.

2023년 2월에서 2023년 11월까지 온라인으로 구매한 신선편의식품 110건과 즉석섭취식품 115건을 대상으로 위생지표균(일반세균, 대장균군 및 대장균)과 식중독균(Staphylococcus aureus, Salmonella spp., Bacillus cereus, Clostridium perfringens, Listeria monocytogenes, 병원성대장균)의 오염도를 조사하였으며, 분리된 균주를 대상으로 병원성 유전자를 확인하였다. 배송 형태는 보냉제를 사용해 배송 시간은 평균 24시간이 소요되어 일반 택배로 배송되었고 제품 표면온도 평균은 11.3 ℃이었다. 일반세균 정량분석 결과, 신선편의식품의 평균 일반세균수는 4.5 log CFU/g, 즉석섭취식품의 평균 일반세균수는 10.6 log CFU/g로 나타났다. 대장균군 정량분석 결과, 신선편의식품, 즉석섭취식품 각각 평균 1.2 log CFU/g이었고, 대장균은 검출되지 않았다. S. aureus, Salmonella spp., C. perfringens, 병원성대장균은 모든 제품에서 검출되지 않았다. B. cereus의 경우 신선편의식품 및 즉석섭취식품에서 각각 3건(2.7%), 1건(0.9%) 검출되었고, 오염 수준은 신선편의식품에서 평균 0.05 log CFU/g, 즉석섭취식품에서 0.01 log CFU/g으로 나타났다. B. cereus 검출된 4건의 검체에서 B. cereus가 생성하는 독소 유전자 6종(hblC, bceT, entFM, nheA, CytK, CER)에 대한 유전자 확인시험 결과 4주가 분리되었고, 구토독소를 제외한 1개 이상의 장독소 유전자가 확인되었다. L. monocytogenes의 경우 즉석섭취식품에서는 검출되지 않았고, 신선편의식품 1건(0.9%)이 검출되었다. 분리한 L. monocytogenes에서 iap 등 6종의 병원성유전자가 검출되었고, 1/2a 혈청형이 확인되어 식중독 발생 위험이 있음을 확인하였다.

Keywords

References

  1. Korea Rural Economic Institute (KREI), (2024, August 15). 2023 Top 7 issues in the food service industry. Retrieved from https://www.krei.re.kr/foodInfo/selectBbsNttView.do?key=738&bbs No=435&nttNo=161760
  2. Ministry of Food and Drug Safety (MFDS), 2022. 2022 Production performance of food items, pp. 93.
  3. Statistics Korea, (2024, August 15). Online shopping trends survey. Retrieved from https://kostat.go.kr/board.es?mid=a10301120 300&bid=241
  4. Korea Rural Economic Institute (KREI), 2021. 2021 Basic analysis report on consumer attitudes survey for processed foods, pp. 229-231.
  5. Ministry of Food and Drug Safety (MFDS), (2023, November 28). Korea food code. Retrieved from https://various.foodsafetykorea.go.kr/fsd/#/ext/Document/FC
  6. Han, K.H., A study on safety enhancement of frozen food delivery service in Korea. Korean-Japanese J. Econ. Manag. Stud., 82, 31-54 (2019).
  7. Cartwright, E.J., Jackson, K.A., Johnson, S.D., Graves, L.M., Silk, B.J., Mahon, B.E., Listeriosis outbreaks and associated food vehicles, United States, 1998-2008. Emerg. Infect. Dis., 19, 1-9 (2013). https://doi.org/10.3201/eid1901.120393
  8. Kim, J.B., Kim, J.M., Cho, S.H., Oh, H.S., Choi, N.J., Oh, D.H., Toxin genes profiles and toxin production ability of Bacillus cereus isolated from clinical and food samples. J. Food Sci., 76, 25-29 (2011).
  9. Choi, J.W., Park, S.Y., Yeon, J.H., Lee, M.J., Chung, D.H., Lee, K.H., Kim, M.G., Lee, D.H., Kim, K.S., Ha, S.D., Microbial contamination levels of fresh vegetables distributed in markets. J. Food Hyg. Saf., 20, 43-47 (2005).
  10. Ministry of Food and Drug Safety (MFDS), 2023. The method for investigating the cause of food poisoning 2023, Cheongju, Korea.
  11. Ministry of Food and Drug Safety (MFDS), 2010. Test method for confirming insect toxin proteins, Cheongju, Korea.
  12. Notermans, S.H., Dufrenne, J., Leimeister-Wachter, M., Domann, E., Chakraborty, T., Phosphatidylinositol-specific phospholipase C activity as a marker to distinguish between pathogenic and non-pathogenic Listeria species. Appl. Envrion. Microbiol., 57, 2666-2670 (1991). https://doi.org/10.1128/aem.57.9.2666-2670.1991
  13. Liu, D., Lawrence, M.L., Austin, F.W., Ainsworth, A.J., A multiplex PCR for species-and virulence-specific determination of Listeria monocytogenes. J. Microbiol. Methods, 71, 133-140 (2007). https://doi.org/10.1016/j.mimet.2007.08.007
  14. Furrer, B., Candrian, U., Hoefelein, C., Luethy, J., Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J. Appl. Bacteriol., 70, 372-379 (1991). https://doi.org/10.1111/j.1365-2672.1991.tb02951.x
  15. Kim, S.I., Development of cool reserving packaging materials for delivery of chilled (frozen) foods. The monthly packaging world, 341, 53-65 (2021).
  16. Han, K.H., A study on safety enhancement of frozen food delivery service in Korea. The Korean-Japanese Journal of Economics & Management Studies, 82, 31-54 (2019). https://doi.org/10.46396/Kjem..82.2
  17. Forsythe, S.J., The Microbiology of Safe Food, Third ed, Wiley-Blackwell, Hoboken, NJ, USA. pp. 261 (2020).
  18. Kim, J.K., Han, J.A., Kwak, H.S., Chung, K.T., Heo, E.J., Establishment of microbial criteria by investigation of microbial contamination in ready-to-eat foods. J. Food Hyg. Saf., 32, 348-354 (2017). https://doi.org/10.13103/JFHS.2017.32.5.348
  19. Kim, H.Y., Oh, S.W., Chung, S.Y., Choi, S.H., Lee, J.W., Yang, J.Y., Seo, E.C., Kim, Y.H., Park, H.O., Yang, C.Y., Ha, S.C., Shin I.S., An investigation of microbial contamination of ready-to-eat products in Seoul, Korea. Korean J. Food Sci. Technol., 43, 39-44 (2011). https://doi.org/10.9721/KJFST.2011.43.1.039
  20. Baek, J.H., Correlation between environmental factors and microbial contamination of ready-to-eat salad in markets. Master's thesis, Chung-Ang University, Seoul, Korea (2011).
  21. Park, H.J., Lee, J.E., Kim, S.A., Shim W.B., Microbial risk assessment for mixed vegetable salad and fresh and frozen fruits distributed in Korea. J. Food Hyg. Saf., 36, 324-330 (2021). https://doi.org/10.13103/JFHS.2021.36.4.324
  22. Solberg, M., Buchalew, J.J., Chen, C.M., Schaffner, D.W., O'Neill, K., McDowell, J., Post, L.S., Boderck, M., Microbial safety assurance system for foodservice facilities. Food Technol., 44, 68-73 (1990).
  23. Donnelly, B., Psychrotropic groth and thermal inactivation of Listeria monocytogenes as a function of milk composition. J. Food Prot., 49, 994-998 (1986). https://doi.org/10.4315/0362-028X-49.12.994
  24. Chung, M.S., 2005. Study on the development of standards and specifications for ensuring sanitary quality of ready-to eat foods and miscellaneous foods, Korean health industry development institute, Cheongju, Korea.
  25. Seo, K.Y., Lee, M.J., Yeon, J.H., Kim, I.J., Ha, J.H., Ha, S.D., Microbiological contamination levels of in salad and side dishes distributed in markets. J. Food Hyg. Saf., 21, 263-268 (2006).
  26. Park, H.J., Lee, J.E., Kim, S.A., Shim, W.B., Changes in internal and external temperature and microbiological contamination depending on consumer behavior after purchase of fresh-cut produces. J. Food Hyg. Saf., 35, 459-467 (2020). https://doi.org/10.13103/JFHS.2020.35.5.459
  27. Lee, Y.W., Park, S.G., Distribution of indicator organisms and influence of storage temperature and period in commercial plant food. J. Food Hyg. Saf., 14, 1-8 (1999).
  28. Jeon, J.H., Roh, J.H., Lee, C.L., Kim, G.H., Lee, J.Y.,Yoon K.S., Microbial qualities of parasites and foodborne pathogens in ready to eat (RTE) fresh-cut produces at the on/offline markets. J. Food Hyg. Saf., 37, 87-96 (2022). https://doi.org/10.13103/JFHS.2022.37.2.87
  29. Jo, M.J., Jeong, A.R., Kim, H.J., Lee, N.R., Oh, S.W., Kim, Y.J., Chun, H.S., Koo, M.S., Microbiological quality of fresh-cut produce and organic vegetables. Korean J. Food Sci. Technol., 43, 91-97 (2011). https://doi.org/10.9721/KJFST.2011.43.1.091
  30. Park, S.H., Gwon, W.G., Lee, I.S., Kim, E.J., Hwang, S.J., Koo, H.S., Na, Y.R., Kim, B.J., Park, E.H., Lee, M.O., Distribution and toxin gene characteristic of Bacillus cereus isolated from foods in Busan. J. Food Hyg. Saf., 35, 219-224 (2020). https://doi.org/10.13103/JFHS.2020.35.3.219
  31. Kim, T.S., Kim, M.J., Kang, Y.M., Oh, G.N., Choi, S.Y., Oh, M.S., Yang, Y.S., Seo, J.M., Ryu, M.G., Kim, E.S., Ha, D.R., Cho, B.S., Molecular characterization and toxin profile of Bacillus cereus strains isolated from ready-to-eat foods. Korean J. Food Sci. Technol., 46, 334-340 (2014). https://doi.org/10.9721/KJFST.2014.46.3.334
  32. Granum, P.E., Lund, T., Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett., 157, 223-228 (1997). https://doi.org/10.1111/j.1574-6968.1997.tb12776.x
  33. Lim, G.S., Koo, M., Kim, H.J., Kho, Y.H., Park, K.S., Oh, S.W., Determination of statistical sampling plans for Bacillus cereus in Salad and Kimbab. J. Food Hyg. Saf., 29, 16-20 (2014). https://doi.org/10.13103/JFHS.2014.29.1.016
  34. Kim, H.K., Lee, H.T., Kim, J.H., Lee, S.S., Analysis of microbiological contamination in ready-to-eat foods. J. Food Hyg. Saf., 23, 285-290 (2008).
  35. Lomonaco, S., Nucera, D., Filipello, V., The evolution and epidemiology of Listeria monocytogenes in Europe and the United States. Infect. Genet. Evol., 35, 172-183 (2015). https://doi.org/10.1016/j.meegid.2015.08.008
  36. Ministry of Food and Drug safety (MFDS), 2019. Food poisoning bacteria characteristics analysis report Listeria monocytogenes, MFDS, Cheongju, Korea, pp. 1-20.
  37. Jeon, E.B., Kim, J.Y., Choi, M.S., Choi, S.h., Bang, H.J., Park, S.Y., Microbial contamination levels in the raw materials of home meal replacement shabu-shabu meal kit distributed in markets. J. Food Hyg. Saf., 35, 375-381 (2020). https://doi.org/10.13103/JFHS.2020.35.4.375