DOI QR코드

DOI QR Code

고온 밀링 공정을 통한 폐인쇄회로기판으로부터 구리 회수

Recovery of Copper from Waste Printed Circuit Boards by High-temperature Milling Process

  • 투고 : 2024.07.18
  • 심사 : 2024.08.20
  • 발행 : 2024.08.31

초록

폐 PCB에는 구리를 포함한 다량의 유가 자원이 포함되어 있으며 이를 회수하기 위한 기술 개발이 꾸준히 이루어지고 있다. 일반적으로 폐 PCB를 재활용하기 위해서는 파쇄 및 분쇄와 같은 물리적 전처리가 필요하다. 그러나 물리적 전처리 과정에서 금속의 손실률이 높고 선별도가 낮아 효율적인 재활용 전처리 공정이 필요하다. 본 연구에서는 폐 PCB에서 효율적인 구리 회수를 위해 열처리와 볼 밀링을 동시에 진행하는 고온밀링공정을 적용하였다. 350 ℃에서 밀링 시간과 밀링 속도, 볼의 무게를 변수로 두어 실험을 수행하였으며 볼의 무게 500 g, 밀링 속도 70 RPM, 볼 밀링 시간 5시간 조건에서 90% 이상의 구리 회수율을 보였다. 회수된 구리의 순도는 약 93%이며, 고온 밀링공정 후 회수된 구리를 후공정을 통해 고순도의 구리로 재소재화 가능성을 확인하였다.

Waste PCBs contain a large amount of valuable resources, including copper, and technology to recover them is constantly being developed. Generally, to recycle waste PCBs, a physical pretreatment process such as shredding and crushing is required. However, during this stage, the loss rate of metals is high and the sorting efficiency is low, indicating a need for a more efficient recycling pretreatment process. In this study, a high-temperature milling process, which simultaneously employs heat treatment and ball milling, was utilized to efficiently recover copper from waste PCBs. An experiment was conducted at 350 ℃ with milling time, milling speed, and the weight of the balls as variables. The results showed a copper recovery rate of over 90% under the conditions of a ball weight of 500 g, a milling speed of 70 RPM, and a milling time of 5 hours. The purity of the recovered copper was approximately 93%, and through post-processing after the high-temperature milling process, the feasibility of reusing the recovered copper as a high-purity material was confirmed.

키워드

과제정보

본 논문은 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 연구되었으며 이에 감사드립니다(No. 20229A10100040).

참고문헌

  1. Forti, V., Balde, C. P., Kuehr, R., et al., 2020 : The global E-Waste Monitor 2020, pp.13-23, UNU/UNITAR SCYCLE, ITU, ISWA, Bonn/Geneva/Rotterdam.
  2. Nagarajan, N., Panchatcharam, P., 2023 : Cost-effective and eco-friendly copper recovery from waste printed circuit boards using organic chemical leaching, Heliyon, 9(3), e13806.
  3. Golzary, A., Abdoli, A. M., 2020 : Recycling of copper from waste printed circuit boards by modified supercritical carbon dioxide combined with supercritical water pretreatment, Journal of CO2 Utilization, 41, 101265.
  4. Huang, K., Guo, J., Xu, Z., 2009 : Recycling of waste printed circuit boards: A review of current technologies and treatment status in China, Journal of Hazardous Materials, 164, pp.399-408. https://doi.org/10.1016/j.jhazmat.2008.08.051
  5. Hall, W. J., Williams, P. T., 2007 : Separation and recovery of materials from scrap printed circuit boards, Resource, Conservation and Recycling, 5(3), pp.691-709. https://doi.org/10.1016/j.resconrec.2006.11.010
  6. Cui, J. and Zhang, L., 2008 : Metallurgical recovery of metals from electronic waste: A review, Journal of Hazardous Materials, 158(2-3), pp.228-256. https://doi.org/10.1016/j.jhazmat.2008.02.001
  7. Marco, I. de., Caballero, B. M., Chomon, M. J., et al., 2008 : Pyrolysis of electrical and electronic wastes, Journal of Analytical and Applied Pyrolysis, 82(2), pp.179-183. https://doi.org/10.1016/j.jaap.2008.03.011
  8. Guo, J., Rao, Q., Xu, J., 2008 : Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound, Journal of Hazardous Materials, 153, pp.728-734. https://doi.org/10.1016/j.jhazmat.2007.09.029
  9. He, W., Li, G., Ma, X., et al., 2006 : WEEE recovery strategies and the WEEE treatment status in China, Journal of Hazardous Materials, 136(3), pp.502-512. https://doi.org/10.1016/j.jhazmat.2006.04.060
  10. Petter, P. M. H., Veit, H. M., Bernardes, A. M., 2014 : Evaluation of gold and silver leaching from printed circuit board of cellphones, Waste Management, 34(2), pp.475-482. https://doi.org/10.1016/j.wasman.2013.10.032
  11. An, H., Kang, L., Lee, C. G., 2017 : Analysis of Commercial Recycling Technology and Research Trend of Printed Circuit Boards in Korea, Journal of the Korean Institute of Resources Recycling, 26(4), pp.9-18. https://doi.org/10.7844/KIRR.2017.26.4.9
  12. Duan, C. L., Diao, Z. J., Zhao, Y. M., et al., 2015 : Liberation of valuable materials in waste printed circuit boards by high-voltage electrical pulses, Minerals Engineering, 70, pp.170-177. https://doi.org/10.1016/j.mineng.2014.09.018
  13. Kim, B., Park, S., Kim, B., et al., 2018 : Physical Property Changes of Wasted Printed Circuit Board by Heat Treatment, Journal of the Korean Institute of Resources Recycling, 27(1), pp.55-63. https://doi.org/10.7844/KIRR.2018.27.1.55
  14. Hou, P., Zhao, A., Wu, W., et al., 2018 : Failure mechanism of glass-fiber reinforced laminates influenced by the copper film in three-point bending, International Journal of Adhesion and Adhesives, 84, pp.368-377. https://doi.org/10.1016/j.ijadhadh.2018.05.006
  15. Hong, S. H., 2011 : Feasibility of Copper Powder Fabrication by Ball Milling of Copper Chip Scrap Occurred During Cutting Process of Copper Pipe, Journal of the Korean Institute of Resources Recycling, 20(6), pp.37-42. https://doi.org/10.7844/KIRR.2011.20.6.037