Acknowledgement
The authors would like to express their sincere gratitude to the anonymous referees and editor for their helpful comments which led to an improved presentation of this paper.
References
- K. B. Athreya and S. G. Pantula, Mixing properties of Harris chains and autoregressive processes, J. Appl. Probab. 23 (1986), no. 4, 880-892. https://doi.org/10.1017/s0021900200118674
- H. Berbee, Convergence rates in the strong law for bounded mixing sequences, Probab. Theory Related Fields 74 (1987), no. 2, 255-270. https://doi.org/10.1007/BF00569992
- R. C. Bradley, Basic properties of strong mixing conditions, Dependence in Probability and Statistics (Oberwolfach, 1985), 165-192, Progr. Probab. Statist. 11, Birkhauser Boston, Boston, MA, 1986. https://doi.org/10.1007/978-1-4615-8162-8_8
- X. Chen, Q. Shao, W. B. Wu, and L. Xu, Self-normalized Cramer-type moderate deviations under dependence, Ann. Statist. 44 (2016), no. 4, 1593-1617. https://doi.org/10.1214/15-AOS1429
- P. Embrechts, C. Kluppelberg, and T. Mikosch, Modelling Extremal Events, Applications of Mathematics (New York), 33, Springer, Berlin, 1997. https://doi.org/10.1007/978-3-642-33483-2
- M. Falk, J. Husler, and R.-D. Reiss, Laws of Small Numbers: Extremes and Rare Events, third, revised and extended edition, Birkhauser/Springer Basel AG, Basel, 2011. https://doi.org/10.1007/978-3-0348-0009-9
- J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York, 1978.
- N. Gantert, A note on logarithmic tail asymptotics and mixing, Statist. Probab. Lett. 49 (2000), no. 2, 113-118. https://doi.org/10.1016/S0167-7152(00)00037-7
- L. Gao, Q.-M. Shao, and J. Shi, Refined Cramer-type moderate deviation theorems for general self-normalized sums with applications to dependent random variables and winsorized mean, Ann. Statist. 50 (2022), no. 2, 673-697. https://doi.org/10.1214/21-aos2122
- Y. Hu and H. Nyrhinen, Large deviations view points for heavy-tailed random walks, J. Theoret. Probab. 17 (2004), no. 3, 761-768. https://doi.org/10.1023/B:JOTP.0000040298.43712.e8
- D. Li and Y. Miao, A supplement to the laws of large numbers and the large deviations, Stochastics 93 (2021), no. 8, 1261-1280. https://doi.org/10.1080/17442508.2021.1903465
- D. Li, Y. Miao, and G. Stoica, A general large deviation result for partial sums of i.i.d. super-heavy tailed random variables, Statist. Probab. Lett. 184 (2022), Paper No. 109371, 10 pp. https://doi.org/10.1016/j.spl.2022.109371
- Y. Liu and Y. J. Hu, Large deviations viewpoints for a heavy-tailed β-mixing sequence, Sci. China Ser. A 48 (2005), no. 11, 1554-1566. https://doi.org/10.1360/03ys0289
- H. Masuda, Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps, Stochastic Process. Appl. 117 (2007), no. 1, 35-56. https://doi.org/10.1016/j.spa.2006.04.010
- Y. Miao and D. Li, A general logarithmic asymptotic behavior for partial sums of i.i.d. random variables, Statist. Probab. Lett. 208 (2024), Paper No. 110043, 11 pp. https://doi.org/10.1016/j.spl.2024.110043
- Y. Miao, Y. Wang, and X. Ma, Some limit results for Pareto random variables, Comm. Statist. Theory Methods 42 (2013), no. 24, 4384-4391. https://doi.org/10.1080/03610926.2011.650271
- Y. Miao, T. Xue, K. Wang, and F. Zhao, Large deviations for dependent heavy tailed random variables, J. Korean Statist. Soc. 41 (2012), no. 2, 235-245. https://doi.org/10.1016/j.jkss.2011.09.001
- Y. Miao and Q. Yin, Limit behaviors for a heavy-tailed β-mixing random sequence, Lith. Math. J. 63 (2023), no. 1, 92-103. https://doi.org/10.1007/s10986-022-09584-7
- T. Nakata, Limit theorems for super-heavy tailed random variables with truncation: application to the super-Petersburg game, Bull. Inst. Math. Acad. Sin. (N.S.) 15 (2020), no. 2, 123-141. https://doi.org/10.21915/BIMAS.2020202
- T. Nakata, Large deviations for super-heavy tailed random walks, Statist. Probab. Lett. 180 (2022), Paper No. 109240. https://doi.org/10.1016/j.spl.2021.109240
- T. Rolski, H. Schmidli, V. Schmidt, and J. Teugels, Stochastic Processes for Insurance and Finance, Wiley Series in Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 1999. https://doi.org/10.1002/9780470317044
- G. Schwarz, Finitely determined processes-an indiscrete approach, J. Math. Anal. Appl. 76 (1980), no. 1, 146-158. https://doi.org/10.1016/0022-247X(80)90068-2
- G. Stoica, Large gains in the St. Petersburg game, C. R. Math. Acad. Sci. Paris 346 (2008), no. 9-10, 563-566. https://doi.org/10.1016/j.crma.2008.03.026