DOI QR코드

DOI QR Code

A Review on Performance Prediction of Marine Fuel Cells

선박용 연료전지 성능 예측 방법에 관한 고찰

  • EUNJOO PARK (Department of Electronic Engineering, Gyeonggi University of Science and Technology) ;
  • JINKWANG LEE (Department of Mechanical Convergence Engineering, Gyeongsang National University)
  • 박은주 (경기과학기술대학교 전기공학과) ;
  • 이진광 (경상국립대학교 기계융합공학과)
  • Received : 2024.08.06
  • Accepted : 2024.08.23
  • Published : 2024.08.30

Abstract

Sustainable shipping depends on eco-friendly energy solutions. This paper reviews methods for predicting marine fuel cell performance, including empirical approaches, physical modeling, data-driven techniques, and hybrid methods. Accurate prediction models tailored to the marine environment's unique conditions are crucial for operational efficiency. By evaluating the strengths and weaknesses of each method, this study provides a comprehensive analysis of effective strategies for forecasting polymer electrolyte membrane fuel cell and solid oxide fuel cell performance in marine applications. These insights contribute to the advancement of eco-friendly shipping technologies and enhance fuel cell performance in challenging marine environments.

Keywords

References

  1. S. A. Korkmaz, K. E. Erginer, O. Yuksel, O. Konur, and C. O. Colpan, "Environmental and economic analyses of fuel cell and battery-based hybrid systems utilized as auxiliary power units on a chemical tanker vessel", International Journal of Hydrogen Energy, Vol. 48, No. 60, 2023, pp. 23279-23295, doi: https://doi.org/10.1016/j.ijhydene.2023.01.320. 
  2. Z. Fu, L. Lu, C. Zhang, Q. Xu, X. Zhang, Z. Gao, and J. Li, "Fuel cell and hydrogen in maritime application: a review on aspects of technology, cost and regulations", Sustainable Energy Technologies and Assessments, Vol. 57, 2023, pp. 103181, doi: https://doi.org/10.1016/j.seta.2023.103181. 
  3. E. Vanem, C. B. Salucci, A. Bakdi, and O. A. Alnes, "Data-driven state of health modelling-a review of state of the art and reflections on applications for maritime battery systems", Journal of Energy Storage, Vol. 43, 2021, pp. 103158, doi: https://doi.org/10.1016/j.est.2021.103158. 
  4. L. Vichard, A. Ravey, P. Venet, F. Harel, S. Pelissier, and D. Hissel, "A method to estimate battery SOH indicators based on vehicle operating data only", Energy, Vol. 225, 2021, pp. 120235, doi: https://doi.org/10.1016/j.energy.2021.120235. 
  5. T. Oji, Y. Zhou, S. Ci, F. Kang, X. Chen, and X. Liu, "Data-driven methods for battery SOH estimation: survey and a critical analysis", IEEE Access, Vol. 9, 2021, pp. 126903-12691 6, doi: https://doi.org/10.1109/ACCESS.2021.3111927. 
  6. D. Hissel and M. C. Pera, "Diagnostic & health management of fuel cell systems: issues and solutions", Annual Reviews in Control, Vol. 42, 2016, pp. 201-211, doi: https://doi.org/10.1016/j.arcontrol.2016.09.005. 
  7. P. Wang, H. Liu, J. Chen, X. Qin, W. Lehnert, Z. Shao, and R. Li, "A novel degradation model of proton exchange membrane fuel cells for state of health estimation and prognostics", International Journal of Hydrogen Energy, Vol. 46, No. 61, 2021, pp. 31353-31361, doi: https://doi.org/10.1016/j.ijhydene.2021.07.004. 
  8. S. L. Chavan and D. B. Talange, "Modeling and performance evaluation of PEM fuel cell by controlling its input parameters", Energy, Vol. 138, 2017, pp. 437-445, doi: https://doi.org/10.1016/j.energy.2017.07.070. 
  9. L. Kistner, A. Bensmann, and R. Hanke-Rauschenbach, "Optimal design of power gradient limited solid oxide fuel cell systems with hybrid storage support for ship applications", Energy Conversion and Management, Vol. 243, 2021, pp. 114396, doi: https://doi.org/10.1016/j.enconman.2021.114396. 
  10. M. Jouin, R. Gouriveau, D. Hissel, M. C. Pera, and N. Zerhouni, "Joint particle filters prognostics for proton exchange membrane fuel cell power prediction at constant current solicitation", IEEE Transactions on Reliability, Vol. 65, No. 1, 2015, pp. 336-349, doi: https://doi.org/10.1109/TR.2015.2454499. 
  11. R. M. Ormerod, "Solid oxide fuel cells", Chemical Society Reviews, Vol. 32, No. 1, 2003, pp. 17-28, doi: https://doi.org/10.1039/B105764M. 
  12. J. Peng, D. Zhao, Y. Xu, X. Wu, and X. Li, "Comprehensive analysis of solid oxide fuel cell performance degradation mechanism, prediction, and optimization studies", Energies, Vol. 16, No. 2, 2023, pp. 788, doi: https://doi.org/10.3390/en16020788. 
  13. L. Cui, H. Huo, G. Xie, J. Xu, X. Kuang, and Z. Dong, "Long-term degradation trend prediction and remaining useful life estimation for solid oxide fuel cells", Sustainability, Vol. 14, No. 15, 2022, pp. 9069, doi: https://doi.org/10.3390/su14159069. 
  14. J. Peng, J. Huang, X. Wu, Y. Xu, H. Chen, and X. Li, "Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: a review", Journal of Power Sources, Vol. 505, 2021, pp. 230058, doi: https://doi.org/10.1016/j.jpowsour.2021.230058. 
  15. J. Kupecki, K. Motylinski, and J. Milewski, "Dynamic analysis of direct internal reforming in a SOFC stack with electrolytesupported cells using a quasi-1D model", Applied Energy, Vol. 227, 2018, pp. 198-205, doi: https://doi.org/10.1016/j.apenergy.2017.07.122. 
  16. P. Fragiacomo, O. Corigliano, G. De Lorenzo, and F. A. Mirandola, "Experimental activity on a 100-W IT-SOFC test bench fed by simulated syngas", Journal of Energy Engineering, Vol. 144, No. 2, 2018, pp. 04018006, doi: https://doi.org/10.1061/(ASCE)EY.1943-7897.0000526. 
  17. D. Papurello and A. Lanzini, "SOFC single cells fed by biogas: experimental tests with trace contaminants", Waste Management, Vol. 72, 2018, pp. 306-312, doi: https://doi.org/10.1016/j.wasman.2017.11.030. 
  18. J. Kupecki, D. Papurello, A. Lanzini, Y. Naumovich, K. Motylinski, M. Blesznowski, and M. Santarelli, "Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC)", Applied Energy, Vol. 230, 2018, p p. 1573-1584, doi: https://doi.org/10.1016/j.apenergy.2018.09.092. 
  19. O. Corigliano, G. Florio, and P. Fragiacomo, "A numerical simulation model of high temperature fuel cells fed by biogas", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 34, No. 2, 2011, pp. 101-110, doi: https://doi.org/10.1080/15567036.2011.584116. 
  20. L. Barelli, G. Bidini, G. Cinti, F. Gallorini, and M. Poniz, "SOFC stack coupled with dry reforming", Applied Energy, Vol. 192, 2017, pp. 498-507, doi: https://doi.org/10.1016/j.apenergy.2016.08.167. 
  21. G. De Lorenzo and P. Fragiacomo, "Electrical and thermal analysis of an intermediate temperature IIR-SOFC system fed by biogas", Energy Science & Engineering, Vol. 6, No. 2, 2018, pp. 60-72, doi: https://doi.org/10.1002/ese3.187. 
  22. S. Dharma, H. C. Ong, H. H. Masjuki, A. H. Sebayang, and A. S. Silitonga, "An overview of engine durability and compatibility using biodiesel-bioethanol-diesel blends in compression-ignition engines", Energy Conversion and Management, Vol. 128, 2016, pp. 66-81, doi: https://doi.org/10.1016/j.enconman.2016.08.072. 
  23. H. Wu, J. Xiao, X. Zeng, X. Li, J. Yang, Y. Zou, S. Liu, P. Dong, Y. Zhang, and J. Liu, "A high performance direct carbon solid oxide fuel cell - a green pathway for brown coal utilization", Applied Energy, Vol. 248, 2019, pp. 679-687, doi: https://doi.org/10.1016/j.apenergy.2019.04.104. 
  24. D. Yan, C. Zhang, L. Liang, K. Li, L. Jia, J. Pu, L. Jian, X. Li, and T. Zhang, "Degradation analysis and durability improvement for SOFC 1-cell stack", Applied Energy, Vol. 175, 20 16, pp. 414-420, doi: https://doi.org/10.1016/j.apenergy.2016.04.094. 
  25. J. Xiao, X. Zeng, M. Li, P. Dong, H. Wu, M. Xu, Y. Lin, J. Liu, Y. Xie, and Y. Zhang, "Effect of pre-calcined ceramic powders at different temperatures on Ni-YSZ anode-supported SOFC cell/stack by low pressure injection molding", Ceramics International, Vol. 45, No. 16, 2019, pp. 20066-20072, doi: https://doi.org/10.1016/j.ceramint.2019.06.270. 
  26. D. Yan, L. Liang, J. Yang, T. Zhang, J. Pu, B. Chi, and J. Li, "PP erformance degradation and analysis of 10-cell anode-supported SOFC stack with external manifold structure", Energy, Vol. 125, 2017, pp. 663-670, doi: https://doi.org/10.1016/j.energy.2016.12.107. 
  27. K. M. Bagherabadi, S. Skjong, and E. Pedersen, "Dynamic modelling of PEM fuel cell system for simulation and sizing of marine power systems", International Journal of Hydrogen Energy, Vol. 47, No. 40, 2022, pp. 17699-17712, doi: https://doi.org/10.1016/j.ijhydene.2022.03.247. 
  28. E. Ovrum and G. Dimopoulos, "A validated dynamic model of the first marine molten carbonate fuel cell", Applied Thermal Engineering, Vol. 35, 2012, pp. 15-28, doi: https://doi.org/10.1016/j.applthermaleng.2011.09.023. 
  29. Y. Cheng, D. Liu, L. Zhang, and X. Feng, "Modeling and simulation analysis of solid oxide fuel cell system for marine equipment", In: 2018 Chinese Automation Congress (CAC); 2018 Nov 30-Dec 2; Xi'an (CN): IEEE, c2018, pp. 347-351, doi: https://doi.org/10.1109/CAC.2018.8623226. 
  30. N. Benyahia, N. Benamrouche, and T. Rekioua, "Modeling, design and simulation of fuel cell modules for small marine applications", In: 2012 XXth International Conference on Electrical Machines IEEE; 2012 Sep 2-5; Marseille (FR): IEEE, c2012, pp. 1989-1995, doi: https://doi.org/10.1109/ICElMach.2012.6350154. 
  31. N. Shakeri, M. Zadeh, and J. Bruinsma, "Dynamic modeling and validation of a fuel cell-based hybrid power system for zero-emission marine propulsion: an equivalent circuit model approach", IEEE Journal of Emerging and Selected Topics in Industrial Electronics, Vol. 5, No. 3, 2023, pp. 1065-1079, doi: https://doi.org/10.1109/JESTIE.2023.3288475. 
  32. A. Bassam, "Use of voyage simulation to investigate hybrid fuel cell systems for marine propulsion [doctoral dissertation]", Southampton: University of Southampton, 2017. 
  33. A. Haxhiu, R. Chan, S. Kanerva, and J. Kyyra, "A system level approach to estimate maximum load steps that can be applied on a fuel cell powered marine DC system", Energy Reports, Vol. 7, 2021, pp. 888-895, doi: https://doi.org/10.1016/j.egyr.2021.01.044. 
  34. H. Sapra, J. Stam, J. Reurings, L. van Biert, W. van Sluijs, P. de Vos, K. Visser, A. P. Vellayani, and H. Hopman "Integration of solid oxide fuel cell and internal combustion engine for maritime applications", Applied Energy, Vol. 281, 2021, pp. 115854, doi: https://doi.org/10.1016/j.apenergy.2020.115854. 
  35. Y. M. A. Welaya, M. Mosleh, and N. R. Ammar, "Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications", International Journal of Naval Architecture and Ocean Engineering, Vol. 5, No. 4, 2013, pp. 529-545, doi: https://doi.org/10.2478/IJNAOE-2013-0151. 
  36. N. Shakeri, W. Chen, M. Zadeh, A. Abdelhakim, A. J. Sorensen, and K. Tai, "Modeling and stability analysis of fuel cellbased marine hybrid power systems", IEEE Transactions on Transportation Electrification 2023 (epub ahead of print), doi: https://doi.org/10.1109/TTE.2023.3325579. 
  37. J. Zuo, H. Lv, D. Zhou, Q. Xue, L. Jin, W. Zhou, D. Yang, and C. Zhang, "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application", Applied Energy, Vol. 281, 2021, pp. 115937, doi: https://doi.org/10.1016/j.apenergy.2020.115937. 
  38. J. Zhong, H. Xiao, A. Chen, S. Lai, J. Lu, Y. Nie, and H. Yin, "Neural network-based modeling of solid oxide fuel cells for marine applications", Journal of Physics: Conference Series, Vol. 2703, 2024, pp. 012009, doi: https://doi.org/10.1088/1742-6596/2703/1/012009. 
  39. M. Jouin, R. Gouriveau, D. Hissel, M. C. Pera, and N. Zerhouni, "Prognostics of PEM fuel cell in a particle filtering framework", International Journal of Hydrogen Energy, Vol. 39, No. 1, 2014, pp. 481-494, doi: https://doi.org/10.1016/j.ijhydene.2013.10.054. 
  40. T. A. Tran, "Comparative analysis on the fuel consumption prediction model for bulk carriers from ship launching to current states based on sea trial data and machine learning technique", Journal of Ocean Engineering and Science, Vol. 6, No. 4, 2021, pp. 317-339, doi: https://doi.org/10.1016/j.joes.2021.02.005. 
  41. E. Ostling, "Model on degradation of PEM fuel cells in marine applications [Master's thesis]", Stockholm: KTH Royal Institute of Technology, 2021.