References
- Ahn, H. (2017). A Study on Compression of Connections in Deep Artificial Neural Networks, Journal of Korea Society of Industrial Information Systems, 22(5), 17-24. https://doi.org/10.9723/jksiis.2017.22.5.017
- Antony, J., McGuinness, K., Moran, K. and O'Connor, N. E. (2017). Automatic Detection of Knee Joints and Quantification of Knee Osteoarthritis Severity Using Convolutional Neural Networks, In Machine Learning and Data Mining in Pattern Recognition: 13th International Conference, MLDM 2017, New York, NY, USA, July 15-20, 2017, Proceedings 13 (pp. 376-390). Springer International Publishing. https://doi.org/10.1007/978-3-319-62416-7_27
- Antony, J., McGuinness, K., O'Connor, N. E. and Moran, K. (2016). Quantifying Radiographic Knee Osteoarthritis Severity Using Deep Convolutional Neural Networks, In 2016 23rd International Conference on Pattern Recognition (ICP R) (pp. 1195-1200). IEEE. https://doi.org/10.1109/ICPR.2016.7899799
- Bayramoglu, N., Nieminen, M. T. and Saarakkala, S. (2020a). A Lightweight CNN and Joint Shape-Joint Space (JS2) Descriptor for Radiological Osteoarthritis Detection, In Annual Conference on Medical Image Understanding and Analysis (pp. 331-345). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-52791-4_26
- Bayramoglu, N., Tiulpin, A., Hirvasniemi, J., Nieminen, M. T. and Saarakkala, S. (2020b). Adaptive Segmentation of Knee Radiographs for Selecting The Optimal ROI in Texture Analysis, Osteoarthrits and Cartilage, 28(7), 941-952. https://doi.org/10.1016/j.joca.2020.03.006
- Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A. and Brendel, W. (2018). ImageNet-trained CNNs are Biased Towards Texture; Increasing Shape Bias Improves Accuracy and Robustness, arXiv preprint arXiv:1811.12231. https://doi.org/10.48550/ arXiv.1811.12231
- Harman, M. (2012). The Role of Artificial Intelligence in Software Engineering, In 2012 First International Workshop on Realizing AI Synergies in Software Engineering (RAISE) (pp. 1-6). IEEE. https://doi.org/10.1109/RAISE.2012.6227961
- Heo, Y. S. (2022). AI Medical & Healthcare, ASTI Market Insight, 65, 1-9.
- Hong, J.-Y., Park, S. H. and Jung, Y.-J. (2020). Artificial Intelligence Based Medical Imaging: An Overview, Journal Radiological Science and Technology, 43(3), 195-208. https://doi.org/10.17946/JRST.2020.43.3.195
- Jeong, G. H. (2018). AI Based Medical Image Analysis Technology Trends, Institute for Information & Communication Technology Planning & Evaluation(I ITP), Weekly Technology Trends.
- Kim, M. and Bae, H. J. (2020). Data Augmentation Techniques for Deep Learning-Based Medical Image Analyses, Journal of the Korean Society of Radiology, 81(6). https://doi.org/10.3348/jksr.2020.0158
- Korean Association of Knee Joints, (2021). Guidebook for Degenerative Arthritis with the Association of Knee Joints, https://www.koreaknee.or.kr/pop/file/guidebook.pdf
- Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). Imagenet Classification with Deep Convolutional Neural Networks, Advances in Neural Information Processing Systems, 25.
- Lee, J. H., Kim, B. M. and Shin, Y. S. (2018). Effects of Preprocessing and Feature Extraction on CNN-Based Fire Detection Performance, Journal of Korea Society of Industrial Information Systems, 23(4), 41-53. https://doi.org/10.9723/jksiis.2018.23.4. 041
- Lee, Y. H. and Kim, Y. S. (2020). Comparison of CNN and YOLO for Object Detection, Journal of the Semiconductor & Display Technology, 19(1), 85-92.
- MSD Manual. (2021). The Korean Orthopaedic Association, Osteoarthritis (OA), https://www.koa.or.kr/info/index_10_1.php
- Pesapane, F., Codari, M. and Sardanelli, F. (2018). Artificial Intelligence in Medical Imaging: Threat or Opportunity? Radiologists Again at The Forefront of Innovation in Medicine, European Radiology Experimental, 2, 1-10. https://doi.org/10.1186/s41747-018-0061-6
- Qi, K., Yang, H., Li, C., Liu, Z., Wang, M., Liu, Q. and Wang, S. (2019). X-net: Brain Stroke Lesion Segmentation Based on Depthwise Separable Convolution and Long-Range Dependencies, In Medical Image Computing and Computer Assisted Intervention-MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part III 22 (pp. 247-255). Springer International Publishing. https://doi.org/10.1007/978-3-030-32248-9_28
- Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B. and Yang, G. Z. (2017). Deep Learning for Health Informatics, IEEE Journal of Biomedical and Health Informatics, 21(1), 4-21. https://doi.org/10.1109/JBHI.2016.2636665
- Shen, D., Wu, G. and Suk, H. I. (2017). Deep Learning in Medical Image Analysis, Annual Review of Biomedical Engineering, 19(1), 221-248. https://doi.org/10.1146/annurev-bioeng-071516-044442
- Trinder, J. C., Wang, Y., Sowmya, A. and Palhang, M. (1997). Artificial Intelligence in 3-D Feature Extraction, In Automatic Extraction of Man-Made Objects from Aerial and Space Images (I I ) (pp. 257-266). Birkhauser Basel. https://doi.org/10.1007/978-3-0348-8906-3_25
- Wright, R. W. (2014). Osteoarthritis Classification Scales: Interobserver Reliability and Arthroscopic Correlation, The Journal of Bone and Joint Surgery, 96(14), 1145-1151. https://doi.org/10.2106/JBJS.M.00929
- Zou, Z., Chen, K., Shi, Z., Guo, Y. and Ye, J. (2023). Object Detection in 20 years: A Survey, Proceedings of the Institute of Electrical and Electronics Engineers, 111(3), 257-276. https://doi.org/10.1109/JPROC.2023.3238524