DOI QR코드

DOI QR Code

동적 수치해석을 통한 베이스먼트의 지진토압에 대한 매개변수 연구

Parametric Study on Seismic Earth Pressure Through Dynamic Numerical Analyses of Basements

  • 박두희 (한양대학교 건설환경공학과 ) ;
  • 이충현 (한양대학교 건설환경공학과 )
  • Park, Du-Hee (Dept. of Civil and Environmental Engineering, Hanyang Univ.) ;
  • Lee, Choong-Hyun (Dept. of Civil and Environmental Engineering, Hanyang Univ.)
  • 투고 : 2024.05.29
  • 심사 : 2024.06.11
  • 발행 : 2024.08.31

초록

동적 토압 해석은 지하 구조물의 내진 설계에서 핵심적인 파라미터이다. 그러나 기존 토압식들은 지반과 구조물의 상호작용, 상대적 유연성 비율(F) 및 구조물의 래킹 비율(R), 종횡비(L/H) 등 중요한 변수들을 종합적으로 고려하지 않은 것들이 대다수이다. 본 연구의 목적은 이러한 매개변수들이 동적 토압에 미치는 영향을 확인하여 기존의 옹벽 토압식의 신뢰도를 평가하는 것이며, 이를 위해 베이스먼트에 대해 동적 수치해석을 통한 매개변수 연구를 수행하였다. 그 결과, 종횡비가 높고 유연성이 낮은 구조물이 종횡비가 낮고 유연성이 높은 구조물보다 지진 토압에 더 취약하다는 사실을 확인하였다. 따라서 베이스먼트의 지진 토압 또는 동적 토압 추정에 있어 종횡비 및 유연비를 고려하는 것이 필요하고, 기존 옹벽의 토압식 적용 시 주의가 필요하다고 판단된다.

Dynamic earth pressure analysis is a key parameter in the seismic design of subterranean structures. However, existing solutions often lack a holistic approach, ignoring crucial elements like soil-structure interaction, the relative flexibility ratio (F) between the soil and a structure, the racking ratio (R) of a structure, and the structure aspect ratio (L/H). In this study, we conducted a thorough suite of dynamic numerical analyses on basements to understand how these factors influence seismic earth pressure. We found that structures with high aspect ratios and low flexibility were more susceptible to seismic pressure than those with lower aspect ratios and greater flexibility. Consequently, we recommend taking the aspect ratio and flexibility into account when estimating the seismic or dynamic earth pressure on basements and exercising caution when using traditional solutions proposed for retaining walls.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1A2C3003245).

참고문헌

  1. ABAQUS, C., Analysis user's manual, Version 6.12. 2012, ABAQUS. 
  2. Al Atik, L. and Sitar, N. (2010), "Seismic Earth Pressures on Cantilever Retaining Structures", Journal of Geotechnical and Geoenvironmental Engineering, Vol.136, No.10, pp.1324-1333. 
  3. Anderson, D.G. (2008), "Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments", Transportation Research Board, Vol.611. 
  4. Argyroudis, S., G. Tsinidis, Gatti, F., and Pitilakis, K. (2017), "Effects of SSI and Lining Corrosion on the Seismic Vulnerability of Shallow Circular Tunnels", Soil Dynamics and Earthquake Engineering, Vol.98, pp.244-256. 
  5. Bray, J.D., Rathje, E.M., Augello, A.J., and Merry, S.M. (1998), "Simplified Seismic Design Procedure for Geosynthetic-lined, Solid-waste Landfills", Geosynthetics International, Vol.5, No.1-2, pp. 203-235. 
  6. Cilingir, U. and Madabhushi, S.G. (2011), "A Model Study on the Effects of Input Motion on the Seismic behaviour of Tunnels", Soil Dynamics and Earthquake Engineering, Vol.31, No.3, pp.452-462. 
  7. Darendeli, M.B. (2001), Development of a New Family of Normalized Modulus Reduction and Material Damping Curves. 
  8. DEEPSOIL (2024), "A Nonlinear and Equivalent Linear Seismic Site Response of 1-D Soil Columns, User Manual", Board of Trustees of University of Illinois at Urbana-Champaign, Urbana, IL. 
  9. Deng, Y.H., Dashti, S., Hushmand, A., Davis, C., and Hushmand, B. (2016), "Seismic Response of Underground Reservoir Structures in Sand: Evaluation of Class-c and c1 Numerical Simulations Using Centrifuge Experiments", Journal of Geotechnical Geoenvironmental Engineering, Vol.85, pp.202-216. 
  10. Geraili Mikola, R., Candia, G., and Sitar, N. (2016), "Seismic Earth Pressures on Retaining Structures and Basement Walls in Cohesionless Soils", Journal of Geotechnical Geoenvironmental Engineering, Vol.142, No.10, p.04016047. 
  11. Groholski, D.R., Hashash, Y.M.A., Kim, B., Musgrove, M., Harmon, J., and Stewart, J.P. (2016), "Simplified Model for Small-strain Nonlinearity and Strength in 1D Seismic Site Response Analysis", Journal of Geotechnical and Geoenvironmental Engineering, Vol.142, No.9, p.04016042. 
  12. Hardin, B.O. (1978), "The Nature of Stress-strain behavior for Soils", in Earthquake Engineering and Soil Dynamics--Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, Vol.I, Pasadena, California. 
  13. Hashash, Y.M.A., Dashti, S., Musgrove, M., Gillis, K., Walker, M., Ellison, K., and Basarah, Y.I. (2018), "Influence of Tall Buildings on Seismic Response of Shallow Underground Structures", Journal of Geotechnical and Geoenvironmental Engineering, Vol.144, No.12, p.04018097. 
  14. Hushmand, A., Dashti, S., Davis, C., Hushmand, B., McCartney, J.S., Hu, J., and Lee Y. (2016a), "Seismic Performance of Underground Reservoir Structures: Insight from Centrifuge Modeling on the Influence of Backfill Soil Type and Geometry", Journal of Geotechnical Geoenvironmental Engineering, Vol.142, No.11, p.04016058. 
  15. Hushmand, A., Dashti, S., Davis, C., McCartney, J.S., and Hushmand, B. (2016b), "A Centrifuge Study of the Influence of Site Response, Relative Stiffness, and Kinematic Constraints on the Seismic Performance of Buried Reservoir Structures", Soil Dynamics and Earthquake Engineering, Vol.88, pp.427-438. 
  16. Jo, S.-B., Ha, J.-G., Choo, Y.-W., and Kim, D.-S. (2013), "A Case Study of Evaluating Inertial Effects for Inverted T-shape Retaining Wall via Dynamic Centrifuge Test", Journal of the Korean Geotechnical Society, Vol.29, Issue 4, pp.33-44. 
  17. Kim, B.-I., Jeong, Y.-J., Kim, D.-H., Lee, C.-H., and Han, S.-J. (2014), "The Calculation and Design Method of Active Earth Pressure with Type of Gravity Structures", Journal of the Korean Geotechnical Society, Vol.30, Issue 4, pp.47-63. 
  18. Kwok, A. O. L., Stewart, J. P., Hashash, Y. M. A., Matasovic, N., Pyke, R., Wang, Z., and Yang, Z. (2007), "Use of Exact Solutions of Wave Propagation Problems to Guide Implementation of Nonlinear Seismic Ground Response Analysis Procedures", Journal of Geotechnical and Geoenvironmental Engineering, Vol.133, No.11, pp. 1385-1398. 
  19. Lopez-Perez, D. (2013), "SKYSCRAPEROLOGY: Tall Buildings in History and Building Practice (1975-1984)", Princeton University. 
  20. Mononobe, N. and Matsuo, H. (1929), "On the Determination of Earth Pressures during Earthquakes", in World Engineering Congress, Vol.9, Tokyo. 
  21. Okabe, S. (1924), "General Theory on Earth Pressure and Seismic Stability of Retaining Wall and Dam", Proc. Civil Engrg. Soc., Japan, Vol.10, No.6, pp.1277-1323. 
  22. Penzien, J. (2000), "Seismically Induced Racking of Tunnel Linings", Earthquake Engineering & Structural Dynamics, Vol.29, pp.683-691. 
  23. Phillips, C. and Hashash, Y.M. (2009), "Damping Formulation for Nonlinear 1D Site Response Analyses", Soil Dynamics and Earthquake Engineering, Vol.29, No.7, pp.1143-1158. 
  24. Seed, H.B. and Whitman, R.V. (1970), "Design of Earth Retaining Structures for Dynamic Loads", in ASCE Specialty Conf.-Lateral Stress in the Ground and Design of Earth Retaining Structures. 
  25. Tsinidis, G., Pitilakis, K., and Anagnostopoulos, C. (2016), "Circular Tunnels in Sand: Dynamic Response and Efficiency of Seismic Analysis Methods at Extreme Lining Flexibilities", Bulletin of Earthquake Engineering, Vol.14, pp.2903-2929. 
  26. Veletsos, A.S. and Younan, A.H.J.J.o.G.E. (1994), "Dynamic Modeling and Response of Soil-wall Systems", Journal of Geotechnical Engineering, Vol.120, No.12, pp.2155-2179. 
  27. Viswanath, H., Tolloczko, J., and Clarke, J.N. (2003), "Multi-purpose high-rise towers and tall buildings", CRC Press. 
  28. Wagner, N. and Sitar, N. (2016), "Seismic Earth Pressure on Basement Walls with Cohesionless Backfill", Ph.D. dissertation. 
  29. Wang, J.-N. (1993), "Seismic Design of Tunnels: A Simple State-of-the-art Design Approach", Parsons Brinckerhoff. 
  30. Wilbur, R.L. and Mead, E. (1933), "The Construction of Hoover Dam: Preliminary Investigations, Design of Dam, and Progress of Construction", US Government Printing Office. 
  31. Wood, J.H. (1973), Earthquake-induced Soil Pressures on Structures. 
  32. Yun, J. S., Han, J.-T., Kim, J.-K., Kim, D.-C., Kim, D., and Choo, Y. W. (2022), "Investigation of Seismic Response for Deep Temporary Excavation Retaining Wall Using Dynamic Centrifuge Test", Journal of the Korean Geotechnical Society, Vol.38, Issue 11, pp.119-135. 
  33. Zhang, W., Esmaeilzadeh Seylabi, E., and Taciroglu, E. (2017), "Validation of a Three-dimensional Constitutive Model for Nonlinear Site Response and Soil-structure Interaction Analyses Using Centrifuge Test Data", Journal of Geotechnical Geoenvironmental Engineering, Vol.41, No.18, pp.1828-1847.