DOI QR코드

DOI QR Code

포화도에 따른 모래-타이어칩 혼합토의 열전도도 변화: 입자의 소수성 영향

Thermal Conductivity of Sand-Tire Rubber Mixtures According to Degree of Saturation: Effect of Hydrophobic Particles

  • 오지석 (한양대학교 건설환경공학과) ;
  • 추현욱 (한양대학교 건설환경공학과)
  • Oh, Jiseok ( Dept. of Civil and Environmental Engineering, Hanyang Univ.) ;
  • Choo, Hyunwook (Dept. of Civil and Environmental Engineering, Hanyang Univ.)
  • 투고 : 2024.05.29
  • 심사 : 2024.06.09
  • 발행 : 2024.08.31

초록

자체 광물 특성에 의해 타이어칩은 모래와 같은 천연 지반재료에 비해 매우 낮은 열전도도를 가지므로 모래-타이어칩 혼합토는 단열재료로써 활용될 수 있다. 하지만 모래-타이어칩 혼합토에 대한 기존 열전도도 연구는 제한적이었다. 따라서 본 연구에서는 포화도에 따라 다양한 입경크기 비율을 가진 모래-타이어칩 혼합토의 열전도도 변화를 조사하였다. 단열 처리된 셀에 시료를 조성하였으며, 탐침법을 이용하여 열전도도 실험을 수행하였다. 또한 본 연구는 혼합토의 접촉각 측정을 수행하였다. 그 결과 타이어칩 함량이 낮아질수록, 포화도가 증가할수록 열전도도가 증가함을 확인했다. 하지만 타이어칩 함량에 따라 혼합토의 포화도에 따른 열전도도 증가 경향은 달라졌으며, 특히 타이어칩 함량이 40% 이상인 시료의 경우 포화도가 증가함에도 불구하고 열전도도는 지연 증가하였다. 이는 소수성 입자(타이어칩)가 함수비 증가에 따른 추가적인 열전도 경로인 capillary water bridge 형성을 지연시키고, 이로 인해 포화도에 대한 혼합토의 열전도도 의존성이 변화하였기 때문이다.

Because of their mineral composition, tire chips have very low thermal conductivity compared with natural geomaterials, leading to the use of sand-tire rubber mixtures in thermally insulating applications. However, systematic studies evaluating factors affecting the thermal conductivity of sand-tire rubber mixtures have been very limited. Thus, this study investigated the thermal conductivity of sand-tire rubber mixtures with varying size ratios and tire chip fractions according to the degree of saturation (S). Specimens were prepared in insulated cells, and thermal needle probe tests were performed. In addition, the contact angle and solid surface free energy of sand-tire rubber mixtures were investigated. The results of this study revealed that the thermal conductivity decreased with increasing tire chip fraction but increased with increasing water content (or S). However, the trend of increasing thermal conductivity with S varied with the tire chip fraction, and the specimens with tire chip fraction > 0.4 clearly showed a delayed increase in thermal conductivity with increasing S. This reflected that hydrophobic particles (tire chip) affected the dependency of thermal conductivity on S because of the delayed formation of capillary water bridges, which served as additional thermal conduction paths with increased moisture content.

키워드

과제정보

본 연구는 한국연구재단(과제번호 RS-2023-00221719)의 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

참고문헌

  1. Aduda, B. O. (1996), "Effective Thermal Conductivity of Loose Particulate Systems", Journal of Materials Science, Vol.31, No.24, pp.6441-6448.
  2. Ahmed, I. and Lovell, C. (1993), "Rubber Soils as Lightweight Geomaterials", Transportation Research Record, (1422).
  3. Aydilek, A. H., Madden, E. T., and Demirkan, M. M. (2006), "Field Evaluation of a Leachate Collection System Constructed with Scrap Tires", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.8, pp.990-1000. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(990)
  4. Bai, Y. and Niedzwecki, J. M. (2014), "Modeling Deepwater Seabed Steady-state Thermal Fields Around Buried Pipeline Including Trenching and Backfill Effects", Computers and Geotechnics, Vol.61, pp.221-229. https://doi.org/10.1016/j.compgeo.2014.05.018
  5. Bauters, T. W. J., Steenhuis, T. S., DiCarlo, D. A., Nieber, J. L., Dekker, L. W., Ritsema, C. J., Parlange, J.-Y., and Haverkamp, R. (2000), "Physics of Water Repellent Soils", Journal of Hydrology, Vol.231, pp.233-243. https://doi.org/10.1016/S0022-1694(00)00197-9
  6. Becker, D.E., Jefferies, M.G., Shinde, S.B., and Crooke, J.H.A. (1985), "Porewater Pressures in Clays below Caisson Islands", Proceeding of Arctic '85: Civil Engineering in the Arctic Offshore, San Francisco, pp.75-83.
  7. Bhatt, A., Choo, H., and Burns, S. E. (2022), "Effect of Iron Oxide Coatings on Thermal Conductivity of Silica Sands", KSCE Journal of Civil Engineering, Vol.26, No.5, pp.2153-2159. https://doi.org/10.1007/s12205-022-1863-x
  8. Bosscher, P. J., Edil, T. B., and Kuraoka, S. (1997), "Design of Highway Embankments Using Tire Chips", Journal of Geotechnical and Geoenvironmental Engineering, Vol.123, No.4, pp.295-304. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(295)
  9. Carrillo, M. L. K., Yates, S. R., and Letey, J. (1999), "Measurement of Initial Soil-water Contact Angle of Water Repellent Soils", Soil Science Society of America Journal, Vol.63, No.3, pp.433-436.
  10. Carslaw, H. S., Jaeger, J. C., and Feshbach, H. (1962), "Conduction of Heat in Solids", Physics Today, Vol.15, No.11, pp.74-76. https://doi.org/10.1063/1.3057871
  11. Chen, S. X. (2008), "Thermal Conductivity of Sands", Heat and Mass Transfer, Vol.44, No.10, pp.1241-1246. https://doi.org/10.1007/s00231-007-0357-1
  12. Choi, Y., Choo, H., Yun, T. S., Lee, C., and Lee, W. (2016), "Engineering Characteristics of Chemically Treated Water-repellent Kaolin", Materials, Vol.9, No.12, p.978.
  13. Choo, H. and Lee, C. (2021), "Inverse Effect of Packing Density on Shear Wave Velocity of Binary Mixed Soils with Varying Size Ratios", Journal of Applied Geophysics, Vol.194, 104457. https://doi.org/10.1016/j.jappgeo.2021.104457
  14. Choo, H., Won, J., and Burns, S. E. (2021), "Thermal Conductivity of Dry Fly Ashes with Various Carbon and Biomass Contents", Waste Management, Vol.135, pp.122-129. https://doi.org/10.1016/j.wasman.2021.08.033
  15. Christ, M., Park, J.-B., and Hong, S.-S. (2010), "Laboratory Observation of the Response of a Buried Pipeline to Freezing Rubber-sand Backfill", Journal of Materials in Civil Engineering, Vol.22, No.9, pp.943-950. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000090
  16. Cote, J. and Konrad, J.-M. (2005), "A Generalized Thermal Conductivity Model for Soils and Construction Materials", Canadian Geotechnical Journal, Vol.42, No.2, pp.443-458. https://doi.org/10.1139/t04-106
  17. Cui, S.-q., Zhou, C., and Zhang, J.-h. (2022), "Experimental Investigations on the State-dependent Thermal Conductivity of Sand-rubber Mixtures", Journal of Materials in Civil Engineering, Vol.34, No.3, 04021492. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004133
  18. Doerr, Stefan H., Shakesby, R. A., and Walsh, RPDm (2000), "Soil Water Repellency: its Causes, Characteristics and Hydro-geomorphological Significance", Earth-Science Reviews, Vol.51, No.1-4, pp.33-65. https://doi.org/10.1016/S0012-8252(00)00011-8
  19. Dong, Y., McCartney, J. S., and Lu, N. (2015), "Critical Review of Thermal Conductivity Models for Unsaturated Soils", Geotechnical and Geological Engineering, Vol.33, pp.207-221.
  20. Farouki, O., and Farouki, O. (1981), Thermal Properties of Soils (Vol. 81). US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory.
  21. Gangadhara Rao, M. V. B. B., and Singh, D. N. (1999), "A Generalized Relationship to Estimate Thermal Resistivity of Soils", Canadian Geotechnical Journal, Vol.36, No.4, pp.767-773.
  22. Ghaaowd, I., McCartney, J. S., Thielmann, S. S., Sanders, M. J., and Fox, P. J. (2017), "Shearing behavior of Tire-derived Aggregate with Large Particle Size. I: Internal and Concrete Interface Direct Shear", Journal of Geotechnical and Geoenvironmental Engineering, Vol.143, No.10, 04017078.
  23. Gilboa, A., Bachmann, J., Woche, S. K., and Chen, Y. (2006), "Applicability of Interfacial Theories of Surface Tension to Water-repellent Soils", Soil Science Society of America Journal, Vol.70, No.5, pp.1417-1429.
  24. Good, R. J. and Girifalco, L. A. (1960), "A Theory for Estimation of Surface and Interfacial Energies. III. Estimation of Surface Energies of Solids from Contact Angle Data", The Journal of Physical Chemistry, Vol.64, No.5, pp.561-565.
  25. Han, E., Lee, C., Choi, H. J., and Choi, H. (2013), "Study on Evaluation of Effective Thermal Conductivity of Unsaturated Soil Using Average Capillary Pressure and Network Model", Journal of the Korean Geotechnical Society, Vol.29, No.1, pp.93-107.
  26. Hoseinpour, S. A., Madhi, M., Norouzi, H., Soulgani, B. S., and Mohammadi, A. H. (2019), "Condensate Blockage Alleviation Around Gas-condensate Producing Wells Using Wettability Alteration", Journal of Natural Gas Science and Engineering, Vol.62, pp. 214-223. https://doi.org/10.1016/j.jngse.2018.12.006
  27. JGS (Japanese Geotechnical Society) (2000), Test Method for Minimum and Maximum Densities of Sands, JGS 0161, Tokyo.
  28. Johansen, O. (1975), Thermal Conductivity of Soils, Ph. D. diss. Norwegian Univ. of Science and Technol., Trondheim (CRREL draf transl. 637, 1977).
  29. Ko, H. and Choo, H. (2023), "Experimental Study on the Effect of Degree of Saturation on the Electrical Conductivity of Soils", Journal of the Korean Geotechnical Society, Vol.39, No.8, pp.29-39. https://doi.org/10.7843/KGS.2023.39.8.29
  30. Lee, C., Truong, Q. H., Lee, W., and Lee, J.-S. (2010), "Characteristics of Rubber-sand Particle Mixtures According to Size Ratio", Journal of Materials in Civil Engineering, Vol.22, No.4, pp.323-331. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000027
  31. Lee, J.-S., Dodds, J., and Santamarina, J. C. (2007), "Behavior of Rigid-soft Particle Mixtures", Journal of Materials in Civil Engineering, Vol.19, No.2, pp.179-184. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(179)
  32. Leelamanie, D. A. L., Karube, J., and Yoshida, A. (2008), "Characterizing Water Repellency Indices: Contact Angle and Water Drop Penetration Time of Hydrophobized Sand", Soil Science & Plant Nutrition, Vol.54, No.2, pp.179-187. https://doi.org/10.1111/j.1747-0765.2007.00232.x
  33. Liu, L., Cai, G., and Liu, X. (2020), "Investigation of Thermal Conductivity and Prediction Model of Recycled Tire Rubber-sand Mixtures as Lightweight Backfill", Construction and Building Materials, Vol.248, 118657. https://doi.org/10.1016/j.conbuildmat.2020.118657
  34. Loveridge, F. and Powrie, W. (2013), "Pile Heat Exchangers: Thermal behaviour and Interactions", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, Vol.166, No.2, pp. 178-196. https://doi.org/10.1680/geng.11.00042
  35. Lu, N. and Dong, Y. (2015), "Closed-form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature", Journal of Geotechnical and Geoenvironmental Engineering, Vol.141, No.6, 04015016.
  36. Lu, S., Ren, T., Gong, Y., and Horton, R. (2007), "An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature", Soil Science Society of America Journal, Vol.71, No.1, pp.8-14. https://doi.org/10.2136/sssaj2006.0041
  37. Mashiri, M., Vinod, J., Sheikh, M. N., and Tsang, H.-H. (2015), "Shear Strength and Dilatancy behaviour of Sand-tyre Chip Mixtures", Soils and Foundations, Vol.55, No.3, pp.517-528. https://doi.org/10.1016/j.sandf.2015.04.004
  38. Mohajerani, A., Burnett, L., Smith, J. V., Markovski, S., Rodwell, G., Rahman, M. T., Kurmus, H., Mirzababaei, M., Arulrajah, A., and Horpibulsuk, S. (2020), "Recycling waste rubber tyres in construction materials and associated environmental considerations: A Review", Resources, Conservation and Recycling, Vol.155, 104679. https://doi.org/10.1016/j.resconrec.2020.104679
  39. Noorzad, R., and Raveshi, M. (2017), "Mechanical behavior of Waste Tire Crumbs-sand Mixtures Determined by Triaxial Tests", Geotechnical and Geological Engineering, Vol.35, pp.1793-1802. https://doi.org/10.1007/s10706-017-0209-9
  40. Olorunfemi, Idowu Ezekiel, Temitope Akinwale Ogunrinde, and Johnson Toyin Fasinmirin. (2014), "Soil Hydrophobicity: An Overview", Journal of Scientific Research and Reports, Vol.3, No.8, pp.1003-1037. https://doi.org/10.9734/JSRR/2014/7325
  41. Poh, P. S. and Broms, B. B. (1995), "Slope Stabilization Using Old Rubber Tires and Geotextiles", Journal of Performance of Constructed Facilities, Vol.9, No.1, pp.76-79. https://doi.org/10.1061/(ASCE)0887-3828(1995)9:1(76)
  42. Rowe, R. K. and McIsaac, R. (2005), "Clogging of Tire Shreds and Gravel Permeated with Landfill Leachate", Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.6, pp.682-693. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(682)
  43. Ryu, B., Choo, H., Park, J., and Burns, S. E. (2022), "Stress-Deformation Response of Rigid-Soft Particulate Mixtures under Repetitive Ko Loading Conditions", Transportation Geotechnics, Vol.37, 100835. https://doi.org/10.1016/j.trgeo.2022.100835
  44. Sathiskumar, C. and Karthikeyan, S. (2019), "Recycling of Waste Tires and its Energy Storage Application of by-products-a Review", Sustainable Materials and Technologies, Vol.22, e00125. https://doi.org/10.1016/j.susmat.2019.e00125
  45. Singh, D. N. and Devid, K. (2000), "Generalized Relationships for Estimating Soil Thermal Resistivity", Experimental Thermal and Fluid Science, Vol.22, No.3-4, pp.133-143.
  46. Tarnawski, V. R. and Gori, F. (2002), "Enhancement of the Cubic Cell Soil Thermal Conductivity Model", International Journal of Energy Research, Vol.26, No.2, pp.143-157. https://doi.org/10.1002/er.772
  47. Tarnawski, V. R., Momose, T., Leong, W. H., Bovesecchi, G., and Coppa, P. (2009), "Thermal Conductivity of Standard Sands. Part I. Dry-state Conditions", International Journal of Thermophysics, Vol.30, pp.949-968.
  48. Tweedie, J., Humphrey, D., and Sandford, T. (1998), "Tire Shreds as Lightweight Retaining Wall Backfill: Active Conditions", Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.11, pp.1061-1070. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1061)
  49. Vargas, Watson L. and Joseph J. McCarthy. (2001), "Heat Conduction in Granular Materials", Aiche Journal, Vol.47, No.5, pp.1052-1059. https://doi.org/10.1002/aic.690470511
  50. Won, J., Ryu, B., and Choo, H. (2024), "Evolution of Maximum Shear Modulus and Compression Index of Rigid-soft Mixtures under Repetitive K0 Loading Conditions", Acta Geotechnica, 1-16. https://doi.org/10.1007/s11440-023-01945-x
  51. Xiao, Y., Nan, B., and McCartney, J. S. (2019), "Thermal Conductivity of Sand-tire Shred Mixtures, Journal of Geotechnical and Geoenvironmental Engineering", Vol.145, No.11, 06019012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002155
  52. Yang, Y.-L., Zhang, T., Reddy, K. R., Li, J.-S., and Liu, S.-y. (2022), "Thermal Conductivity of Scrap Tire Rubber-sand Composite as Insulating Material: Experimental Investigation and Predictive Modeling", Construction and Building Materials, Vol.332, 127387. https://doi.org/10.1016/j.conbuildmat.2022.127387
  53. Young, T. (1805), "An Essay on the Cohesion of Fluids", Philosophical Transactions of the Royal Society of London, (95), pp.65-87.
  54. Yoon, S., Lee, S. R., Kim, Y. S., Kim, G. Y., and Kim, K. (2016), "Prediction of Ground Thermal Properties from Thermal Response Test", Journal of the Korean Geotechnical Society, Vol.32, No.7, pp.5-14.
  55. Yun, T. S. and Evans, T. M. (2010), "Three-dimensional Random Network Model for Thermal Conductivity in Particulate Materials", Computers and Geotechnics, Vol.37, No.7-8, pp.991-998.
  56. Yun, T. S. and Santamarina, J. C. (2008), "Fundamental Study of Thermal Conduction in Dry Soils", Granular Matter, Vol.10, pp.197-207.
  57. Zhao, Y., Yu, B., Yu, G., and Li, W. (2014), "Study on the Water-heat Coupled Phenomena in Thawing Frozen Soil around a Buried Oil Pipeline", Applied Thermal Engineering, Vol.73, No.2, pp. 1477-1488. https://doi.org/10.1016/j.applthermaleng.2014.06.017