Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean government (Ministry of Science and ICT, MSIT) (No. 2022R1A2C1013205).
References
- Abe D, Inaji M, Hase T, Takahashi S, Sakai R, Ayabe F, et al. : A prehospital triage system to detect traumatic intracranial hemorrhage using machine learning algorithms. JAMA Netw Open 5 : e2216393, 2022
- Abujaber A, Fadlalla A, Gammoh D, Abdelrahman H, Mollazehi M, ElMenyar A : Using trauma registry data to predict prolonged mechanical ventilation in patients with traumatic brain injury: machine learning approach. PLoS one 15 : e0235231, 2020
- Al-Mufti F, Smith B, Lander M, Damodara N, Nuoman R, El-Ghanem M, et al. : Novel minimally invasive multi-modality monitoring modalities in neurocritical care. J Neurol Sci 390 : 184-192, 2018
- Athaya T, Choi S : Evaluation of different machine learning models for photoplethysmogram signal artifact detection. 2020 International conference on information and communication technology convergence (ICTC); 2020 Oct 21-23; Jeju, Korea. New York : IEEE, c2020, pp1206-1208
- Au-Yeung WM, Sahani AK, Isselbacher EM, Armoundas AA : Reduction of false alarms in the intensive care unit using an optimized machine learning based approach. NPJ Digit Med 2 : 86, 2019
- Awaysheh A, Wilcke J, Elvinger F, Rees L, Fan W, Zimmerman KL : Review of medical decision support and machine-learning methods. Vet Pathol 56 : 512-525, 2019
- Azabou E, Navarro V, Kubis N, Gavaret M, Heming N, Cariou A, et al. : Value and mechanisms of EEG reactivity in the prognosis of patients with impaired consciousness: a systematic review. Crit Care 22 : 184, 2018
- Backhaus S : Traumatic Brain Injury (TBI) in Kreutzer JS, DeLuca J, Caplan B (eds) : Encyclopedia of Clinical Neuropsychology. New York : Springer New York, 2011, pp2550-2554
- Bakator M, Radosav D : Deep learning and medical diagnosis: a review of literature. Multimodal Technol Interact 2 : 47, 2018
- Beqiri E, Smielewski P, Robba C, Czosnyka M, Cabeleira MT, Tas J, et al. : Feasibility of individualised severe traumatic brain injury management using an automated assessment of optimal cerebral perfusion pressure: the COGiTATE phase II study protocol. BMJ Open 9 : e030727, 2019
- Bhavsar KA, Singla J, Al-Otaibi YD, Song OY, Zikria YB, Bashir AK : Medical diagnosis using machine learning: a statistical review. Comput Mater Contin 67 : 107-125, 2021
- Bonds BW, Yang S, Hu PF, Kalpakis K, Stansbury LG, Scalea TM, et al. : Predicting secondary insults after severe traumatic brain injury. J Trauma Acute Care Surg 79 : 85-90, 2015
- Briganti G : A clinician's guide to large language models. Future Medicine AI 1 : FMAI1, 2023
- Brossard C, Lemasson B, Attye A, De Busschere JA, Payen JF, Barbier EL, et al. : Contribution of CT-scan analysis by artificial intelligence to the clinical care of TBI patients. Front Neurol 12 : 666875, 2021
- Burgess S, Abu-Laban RB, Slavik RS, Vu EN, Zed PJ : A systematic review of randomized controlled trials comparing hypertonic sodium solutions and mannitol for traumatic brain injury: implications for emergency department management. Ann Pharmacother 50 : 291-300, 2016
- Carra G, Guiza F, Depreitere B, Meyfroidt G; CENTER-TBI High-Resolution ICU (HR ICU) Sub-Study Participants and Investigators : Prediction model for intracranial hypertension demonstrates robust performance during external validation on the CENTER-TBI dataset. Intensive Care Med 47 : 124-126, 2021
- Chen JW, Gombart ZJ, Rogers S, Gardiner SK, Cecil S, Bullock RM : Pupillary reactivity as an early indicator of increased intracranial pressure: the introduction of the Neurological Pupil index. Surg Neurol Int 2 : 82, 2011
- Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. : A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 367 : 2471-2481, 2012
- Choi Y, Park JH, Hong KJ, Ro YS, Song KJ, Shin SD : Development and validation of a prehospital-stage prediction tool for traumatic brain injury: a multicentre retrospective cohort study in Korea. BMJ Open 12 : e055918, 2022
- Corral-Acero J, Margara F, Marciniak M, Rodero C, Loncaric F, Feng Y, et al. : The 'Digital Twin' to enable the vision of precision cardiology. Eur Heart J 41 : 4556-4564, 2020
- Croatti A, Gabellini M, Montagna S, Ricci A : On the integration of agents and digital twins in healthcare. J Med Syst 44 : 161, 2020
- Cui W, Ge S, Shi Y, Wu X, Luo J, Lui H, et al. : Death after discharge: prognostic model of 1-year mortality in traumatic brain injury patients undergoing decompressive craniectomy. Chin Neurosurg J 7 : 24, 2021
- Cvach M : Monitor alarm fatigue: an integrative review. Biomed Instrum Technol 46 : 268-277, 2012
- DeJournett L, DeJournett J : In silico testing of an artificial-intelligencebased artificial pancreas designed for use in the intensive care unit setting. J Diabetes Sci Technol 10 : 1360-1371, 2016
- Drew BJ, Harris P, Zegre-Hemsey JK, Mammone T, Schindler D, Salas-Boni R, et al. : Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PloS One 9 : e110274, 2014
- Dundar TT, Yurtsever I, Pehlivanoglu MK, Yildiz U, Eker A, Demir MA, et al. : Machine learning-based surgical planning for neurosurgery: artificial intelligent approaches to the cranium. Front Surg 9 : 863633, 2022
- Eddy DM, Schlessinger L : Validation of the Archimedes diabetes model. Diabetes Care 26 : 3102-3110, 2003
- Ellethy H, Chandra SS, Nasrallah FA : The detection of mild traumatic brain injury in paediatrics using artificial neural networks. Comput Biol Med 135 : 104614, 2021
- Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK : Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys 45 : 3627-3636, 2018
- Erol T, Mendi AF, Dogan D : The digital twin revolution in healthcare. 2020 4th international symposium on multidisciplinary studies and innovative technologies (ISMSIT); 2020 Oct 22-24; Istanbul, Turkey. New York : IEEE, c2020, pp1-7
- Evensen KB, Eide PK : Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids Barriers CNS 17 : 34, 2020
- Farzaneh N, Williamson CA, Gryak J, Najarian K : A hierarchical expert-guided machine learning framework for clinical decision support systems: an application to traumatic brain injury prognostication. NPJ Digit Med 4 : 78, 2021
- Garg A, Mago V : Role of machine learning in medical research: a survey. Compu Sci Rev 40 : 100370, 2021
- Ghajar J : Traumatic brain injury. Lancet 356 : 923-929, 2000
- Glaser J, Vasquez M, Cardarelli C, Galvagno S Jr, Stein D, Murthi S, et al. : Through the looking glass: early non-invasive imaging in TBI predicts the need for interventions. Trauma Surg Acute Care Open 1 : e000019, 2016
- Gong EJ, Bang CS : Interpretation of medical images using artificial intelligence: current status and future perspectives. Korean J Gastroenterol 82 : 43-45, 2023
- Greenfield D : Artificial intelligence in medicine: applications, implications and limitations. Available at : https://sitn.hms.harvard.edu/flash/2019/artificial-intelligence-in-medicine-applications-implications-and-limitations/
- Guiza F, Depreitere B, Piper I, Van den Berghe G, Meyfroidt G : Novel methods to predict increased intracranial pressure during intensive care and long-term neurologic outcome after traumatic brain injury: development and validation in a multicenter dataset. Crit Care Med 41 : 554-564, 2013
- Guler I, Gokcil Z, Gulbandilar E : Evaluating of traumatic brain injuries using artificial neural networks. Expert Syst Appl 36 : 10424-10427, 2009
- Habibzadeh A, Khademolhosseini S, Kouhpayeh A, Niakan A, Asadi MA, Ghasemi H, et al. : Machine learning-based models to predict the need for neurosurgical intervention after moderate traumatic brain injury. Health Sci Rep 6 : e1666, 2023
- Hale AT, Stonko DP, Lim J, Guillamondegui OD, Shannon CN, Patel MB : Using an artificial neural network to predict traumatic brain injury. J Neurosurg Pediatr 23 : 219-226, 2018
- Hanko M, Grendar M, Snopko P, Opsenak R, Sutovsky J, Benco M, et al. : Random forest-based prediction of outcome and mortality in patients with traumatic brain injury undergoing primary decompressive craniectomy. World Neurosurg 148 : e450-e458, 2021
- Haveman ME, Van Putten MJAM, Hom HW, Eertman-Meyer CJ, Beishuizen A, Tjepkema-Cloostermans MC : Predicting outcome in patients with moderate to severe traumatic brain injury using electroencephalography. Crit Care 23 : 401, 2019
- Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL : Artificial intelligence in radiology. Nat Rev Cancer 18 : 500-510, 2018
- Hsu YC, Weng HH, Kuo CY, Chu TP, Tsai YH : Prediction of fall events during admission using eXtreme gradient boosting: a comparative validation study. Sci Rep 10 : 16777, 2020
- Huanxia W : A method for patient gait real-time monitoring based on powered exoskeleton and digital twin. Fifth International Conference on Computer Information Science and Artificial Intelligence (CISAI 2022); 2022 Sep 16-18; Chongqing, China. Bellingham : SPIE, c2023, Vol 12566, pp734-743
- Hunter OF, Perry F, Salehi M, Bandurski H, Hubbard A, Ball CG, et al. : Science fiction or clinical reality: a review of the applications of artificial intelligence along the continuum of trauma care. World J Emerg Surg 18 : 16, 2023
- Imaduddin SM, Fanelli A, Vonberg FW, Tasker RC, Heldt T : Pseudo-Bayesian model-based noninvasive intracranial pressure estimation and tracking. IEEE Trans Biomed Eng 67 : 1604-1615, 2020
- Jahns FP, Miroz JP, Messerer M, Daniel RT, Taccone FS, Eckert P, et al. : Quantitative pupillometry for the monitoring of intracranial hypertension in patients with severe traumatic brain injury. Crit Care 23 : 155, 2019
- Jain S, Vyvere TV, Terzopoulos V, Sima DM, Roura E, Maas A, et al. : Automatic quantification of computed tomography features in acute traumatic brain injury. J Neurotrauma 36 : 1794-1803, 2019
- Jaishankar R, Fanelli A, Filippidis A, Vu T, Holsapple J, Heldt T : A spectral approach to model-based noninvasive intracranial pressure estimation. IEEE J Biomed Health Inform 24 : 2398-2406, 2020
- Jung MK, Ahn D, Park CM, Ha EJ, Roh TH, You NK, et al. : Prediction of serious intracranial hypertension from low-resolution neuromonitoring in traumatic brain injury: an explainable machine learning approach. IEEE J Biomed Health Inform 27 : 1903-1913, 2023
- Kashif FM, Verghese GC, Novak V, Czosnyka M, Heldt T : Model-based noninvasive estimation of intracranial pressure from cerebral blood flow velocity and arterial pressure. Sci Transl Med 4 : 129ra144, 2012
- Keshavamurthy KN, Leary OP, Merck LH, Kimia B, Collins S, Wright DW, et al. : Machine learning algorithm for automatic detection of CT-identifiable hyperdense lesions associated with traumatic brain injury. Medical Imaging 2017: Computer-Aided Diagnosis; 2017 Feb 11-16; Olando, FL. Bellingham : SPIE, c2017, Vol 10134, pp630-638
- Kim H, Lee SB, Son Y, Czosnyka M, Kim DJ : Hemodynamic instability and cardiovascular events after traumatic brain injury predict outcome after artifact removal with deep belief network analysis. J Neurosurg Anesthesiol 30 : 347-353, 2018
- Kim YJ : The impact of time to surgery on outcomes in patients with traumatic brain injury: a literature review. Int Emerg Nurs 22 : 214-219, 2014
- Kinoshita K : Traumatic brain injury: pathophysiology for neurocritical care. J Intensive Care 4 : 29, 2016
- Kovacs M, Peluso L, Njimi H, De Witte O, Gouvea Bogossian E, Quispe Cornejo A, et al. : Optimal cerebral perfusion pressure guided by brain oxygen pressure measurement. Front Neurol 12 : 732830, 2021
- Kristiansson H, Nissborg E, Bartek J Jr, Andresen M, Reinstrup P, Romner B : Measuring elevated intracranial pressure through noninvasive methods: a review of the literature. J Neurosurg Anesthesiol 25 : 372-385, 2013
- Lal A, Li G, Cubro E, Chalmers S, Li H, Herasevich V, et al. : Development and verification of a digital twin patient model to predict specific treatment response during the first 24 hours of sepsis. Crit Care Explor 2 : e0249, 2020
- Lameski P, Zdravevski E, Koceski S, Kulakov A, Trajkovik V : Suppression of intensive care unit false alarms based on the arterial blood pressure signal. IEEE Access 5 : 5829-5836, 2017
- Laubenbacher R, Sluka JP, Glazier JA : Using digital twins in viral infection. Science 371 : 1105-1106, 2021
- Lee HJ, Kim H, Kim YT, Won K, Czosnyka M, Kim DJ : Prediction of life-threatening intracranial hypertension during the acute phase of traumatic brain injury using machine learning. IEEE J Biomed Health Inform 25 : 3967-3976, 2021
- Lee SB, Kim H, Kim YT, Zeiler FA, Smielewski P, Czosnyka M, et al. : Artifact removal from neurophysiological signals: impact on intracranial and arterial pressure monitoring in traumatic brain injury. J Neurosurg 132 : 1952-1960, 2019
- Li H, Ma H, Yang B, Xu C, Cao L, Dong X, et al. : Automatic evaluation of mannitol dehydration treatments on controlling intracranial pressure using electrical impedance tomography. IEEE Sens J 20 : 4832-4839, 2020
- Li Q, Clifford GD : Signal quality and data fusion for false alarm reduction in the intensive care unit. J Electrocardiol 45 : 596-603, 2012
- Lin B, Chen Z, Li M, Lin H, Xu H, Zhu Y, et al. : Towards medical artificial general intelligence via knowledge-enhanced multimodal pretraining. Available at : https://doi.org/10.48550/arXiv.2304.14204
- Lin MY, Li CC, Lin PH, Wang JL, Chan MC, Wu CL, et al. : Explainable machine learning to predict successful weaning among patients requiring prolonged mechanical ventilation: a retrospective cohort study in Central Taiwan. Front Med (Lausanne) 8 : 663739, 2021
- Lyashevska O, Malone F, MacCarthy E, Fiehler J, Buhk JH, Morris L : Class imbalance in gradient boosting classification algorithms: application to experimental stroke data. Stat Methods Med Res 30 : 916-925, 2021
- Maas MB, Naidech AM, Batra A, Chou SH, Bleck TP : Comment on "Can quantitative pupillometry be used to screen for elevated intracranial pressure? A retrospective cohort study". Neurocrit Care 37 : 597-598, 2022
- Magoulas GD, Prentza A : Machine learning in medical applications in Paliouras G, Karkaletsis V, Spyropoulos CD (eds) : Machine Learning and Its Applications. Berlin : Springer, 2021, pp300-307
- Majdan M, Brazinova A, Rusnak M, Leitgeb J : Outcome prediction after traumatic brain injury: comparison of the performance of routinely used severity scores and multivariable prognostic models. J Neurosci Rural Pract 8 : 20-29, 2017
- Majdan M, Mauritz W, Brazinova A, Rusnak M, Leitgeb J, Janciak I, et al. : Severity and outcome of traumatic brain injuries (TBI) with different causes of injury. Brain Inj 25 : 797-805, 2011
- Makarenko S, Griesdale DE, Gooderham P, Sekhon MS : Multimodal neuromonitoring for traumatic brain injury: a shift towards individualized therapy. J Clin Neurosci 26 : 8-13, 2016
- Mariak Z, Swiercz M, Krejza J, Lewko J, Lyson T : Intracranial pressure processing with artificial neural networks: classification of signal properties. Acta Neurochir (Wien) 142 : 407-411; discussion 411-412, 2000
- Marshall GT, James RF, Landman MP, O'Neill PJ, Cotton BA, Hansen EN, et al. : Pentobarbital coma for refractory intra-cranial hypertension after severe traumatic brain injury: mortality predictions and one-year outcomes in 55 patients. J Trauma 69 : 275-283, 2010
- Matsushima K, Inaba K, Siboni S, Skiada D, Strumwasser AM, Magee GA, et al. : Emergent operation for isolated severe traumatic brain injury: does time matter? J Trauma Acute Care Surg 79 : 838-842, 2015
- McIntyre LA, Fergusson DA, Hebert PC, Moher D, Hutchison JS : Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. JAMA 289 : 2992-2999, 2003
- McIver KG : The Application of High-Performance Computing to Create and Analyze Simulations of Human Injury. West Lafayette : Purdue University Graduate School, 2022
- Melinosky C, Yang S, Hu P, Li H, Miller CHT, Khan I, et al. : Continuous vital sign analysis to predict secondary neurological decline after traumatic brain injury. Front Neurol 9 : 761, 2018
- Meyfroidt G, Bouzat P, Casaer MP, Chesnut R, Hamada SR, Helbok R, et al. : Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Med 48 : 649-666, 2022
- Mikola A, Ratsep I, Sarkela M, Lipping T : Prediction of outcome in traumatic brain injury patients using long-term qEEG features. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2015 Aug 25-29; Milan, Italy. New York : IEEE, c2015, pp1532-1535
- Miyagawa T, Sasaki M, Yamaura A : Intracranial pressure based decision making: prediction of suspected increased intracranial pressure with machine learning. PLoS One 15 : e0240845, 2020
- Moor M, Banerjee O, Abad ZSH, Krumholz HM, Leskovec J, Topol EJ, et al. : Foundation models for generalist medical artificial intelligence. Nature 616 : 259-265, 2023
- Moyer JD, Lee P, Bernard C, Henry L, Lang E, Cook F, et al. : Machine learning-based prediction of emergency neurosurgery within 24 h after moderate to severe traumatic brain injury. World J Emerg Surg 17 : 42, 2022
- Naharro-Abellan A, Lobo-Val-buena B, Gordo F : Clinical decision support systems: future or present in ICU. ICU Manag Pract 19 : 202-205, 2019
- Noh SH, Cho PG, Kim KN, Kim SH, Shin DA : Artificial intelligence for neurosurgery : current state and future directions. J Korean Neurosurg Soc 66 : 113-120, 2023
- Noor NSEM, Ibrahim H, Lah MHC, Abdullah JM : Improving outcome prediction for traumatic brain injury from imbalanced datasets using RUSBoosted trees on electroencephalography spectral power. IEEE Access 9 : 121608-121631, 2021
- Noraky J, Verghese GC, Searls DE, Lioutas VA, Sonni S, Thomas A, et al. : Noninvasive intracranial pressure determination in patients with subarachnoid hemorrhage. Acta Neurochir Suppl 122 : 65-68, 2016
- Osheroff JA, Teich J, Levick D, Saldana L, Velasco F, Sittig D, et al. : Improving outcomes with clinical decision support: an implementer's guide. Chicago : Himss Publishing, 2012
- Pansell J, Hack R, Rudberg P, Bell M, Cooray C : Can quantitative pupillometry be used to screen for elevated intracranial pressure? A retrospective cohort study. Neurocrit Care 37 : 531-537, 2022
- Pesapane F, Codari M, Sardanelli F : Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2 : 35, 2018
- Pimentel MA, Brennan T, Lehman LW, King NK, Ang BT, Feng M : Outcome prediction for patients with traumatic brain injury with dynamic features from intracranial pressure and arterial blood pressure signals: a Gaussian process approach. Acta Neurochir Suppl 122 : 85-91, 2016
- Popovic D, Khoo M, Lee S : Noninvasive monitoring of intracranial pressure. Recent Pat Biomed Eng 2 : 165-179, 2009
- Powers WJ : Intracerebral hemorrhage and head trauma: common effects and common mechanisms of injury. Stroke 41(10 Suppl) : S107-S110, 2010
- Raj R, Luostarinen T, Pursiainen E, Posti JP, Takala RSK, Bendel S, et al. : Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep 9 : 17672, 2019
- Rajaei F, Cheng S, Williamson CA, Wittrup E, Najarian K : AI-based decision support system for traumatic brain injury: a survey. Diagnostics (Basel) 13 : 1640, 2023
- Rajpurkar P, Lungren MP : The current and future state of AI interpretation of medical images. N Engl J Med 388 : 1981-1990, 2023
- Robba C, Asgari S, Gupta A, Badenes R, Sekhon M, Bequiri E, et al. : Lung injury is a predictor of cerebral hypoxia and mortality in traumatic brain injury. Front Neurol 11 : 771, 2020
- Robba C, Bacigaluppi S, Cardim D, Donnelly J, Bertuccio A, Czosnyka M : Non-invasive assessment of intracranial pressure. Acta Neurol Scand 134 : 4-21, 2016
- Robba C, Pozzebon S, Moro B, Vincent JL, Creteur J, Taccone FS : Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care 24 : 379, 2020
- Rohaut B, Eliseyev A, Claassen J : Uncovering consciousness in unresponsive ICU patients: technical, medical and ethical considerations. Crit Care 23 : 78, 2019
- Rosenberg JB, Shiloh AL, Savel RH, Eisen LA : Non-invasive methods of estimating intracranial pressure. Neurocrit Care 15 : 599-608, 2011
- Ryu JA, Jung W, Jung YJ, Kwon DY, Kang K, Choi H, et al. : Early prediction of neurological outcome after barbiturate coma therapy in patients undergoing brain tumor surgery. PLoS One 14 : e0215280, 2019
- Sadrawi M, Lin YT, Lin CH, Mathunjwa B, Hsin HT, Fan SZ, et al. : Noninvasive hemodynamics monitoring system based on electrocardiography via deep convolutional autoencoder. Sensors (Basel) 21 : 6264, 2021
- Sainbhi AS, Gomez A, Froese L, Slack T, Batson C, Stein KY, et al. : Noninvasive and minimally-invasive cerebral autoregulation assessment: a narrative review of techniques and implications for clinical research. Front Neurol 13 : 872731, 2022
- Scalzo F, Hamilton R, Asgari S, Kim S, Hu X : Intracranial hypertension prediction using extremely randomized decision trees. Med Eng Phys 34 : 1058-1065, 2012
- Schweingruber N, Mader MMD, Wiehe A, Roder F, Gottsche J, Kluge S, et al. : A recurrent machine learning model predicts intracranial hypertension in neurointensive care patients. Brain 145 : 2910-2919, 2022
- Seelig JM, Becker DP, Miller JD, Greenberg RP, Ward JD, Choi SC : Traumatic acute subdural hematoma: major mortality reduction in comatose patients treated within four hours. N Engl J Med 304 : 1511-1518, 1981
- Shah RV, Grennan G, Zafar-Khan M, Alim F, Dey S, Ramanathan D, et al. : Personalized machine learning of depressed mood using wearables. Transl Psychiatry 11 : 338, 2021
- Sidey-Gibbons JAM, Sidey-Gibbons CJ : Machine learning in medicine: a practical introduction. BMC Med Res Methodol 19 : 64, 2019
- Smith M : Multimodality neuromonitoring in adult traumatic brain injury: a narrative review. Anesthesiology 128 : 401-415, 2018
- Son Y, Lee SB, Kim H, Song ES, Huh H, Czosnyka M, et al. : Automated artifact elimination of physiological signals using a deep belief network: an application for continuously measured arterial blood pressure waveforms. Inf Sci 456 : 145-158, 2018
- Staartjes VE, Stumpo V, Kernbach JM, Klukowska AM, Gadjradj PS, Schroder ML, et al. : Machine learning in neurosurgery: a global survey. Acta Neurochir (Wien) 162 : 3081-3091, 2020
- Stangler LA, Kouzani A, Bennet KE, Dumee L, Berk M, Worrell GA, et al. : Microdialysis and microperfusion electrodes in neurologic disease monitoring. Fluids Barriers CNS 18 : 52, 2021
- Stein SC, Georgoff P, Meghan S, Mirza KL, El Falaky OM : Relationship of aggressive monitoring and treatment to improved outcomes in severe traumatic brain injury. J Neurosurg 112 : 1105-1112, 2010
- Stevens AR, Su Z, Toman E, Belli A, Davies D : Optical pupillometry in traumatic brain injury: neurological pupil index and its relationship with intracranial pressure through significant event analysis. Brain Inj 33 : 1032-1038, 2019
- Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al. : Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 5 : e165; discussion e165, 2008
- Stocker RA : Intensive care in traumatic brain injury including multimodal monitoring and neuroprotection. Med Sci (Basel) 7 : 37, 2019
- Surendrakumar S, Rabelo TK, Campos ACP, Mollica A, Abrahao A, Lipsman N, et al. : Neuromodulation therapies in pre-clinical models of traumatic brain injury: systematic review and translational applications. J Neurotrauma 40 : 435-448, 2023
- Svedung Wettervik TM, Lewen A, Enblad P : Fine tuning of traumatic brain injury management in neurointensive care-indicative observations and future perspectives. Front Neurol 12 : 638132, 2021
- Tao F, Qi Q : Make more digital twins. Nature 573 : 490-491, 2019
- Thabtah F, Abdelhamid N, Peebles D : A machine learning autism classification based on logistic regression analysis. Health Inf Sci Syst 7 : 12, 2019
- Tierney KJ, Nayak NV, Prestigiacomo CJ, Sifri ZC : Neurosurgical intervention in patients with mild traumatic brain injury and its effect on neurological outcomes. J Neurosurg 124 : 538-545, 2016
- Tisdall MM, Smith M : Multimodal monitoring in traumatic brain injury: current status and future directions. Br J Anaesth 99 : 61-67, 2007
- Tsien CL, Fackler JC : Poor prognosis for existing monitors in the intensive care unit. Crit Care Med 25 : 614-619, 1997
- Tsien CL, Kohane IS, McIntosh N : Multiple signal integration by decision tree induction to detect artifacts in the neonatal intensive care unit. Artif Intell Med 19 : 189-202, 2000
- Tu KC, Eric Nyam TT, Wang CC, Chen NC, Chen KT, Chen CJ, et al. : A computer-assisted system for early mortality risk prediction in patients with traumatic brain injury using artificial intelligence algorithms in emergency room triage. Brain Sci 12 : 612, 2022
- Tunthanathip T, Oearsakul T : Application of machine learning to predict the outcome of pediatric traumatic brain injury. Chin J Traumatol 24 : 350-355, 2021
- van de Sande D, van Genderen ME, Huiskens J, Gommers D, van Bommel J : Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit. Intensive Care Med 47 : 750-760, 2021
- Vilela GH, Cabella B, Mascarenhas S, Czosnyka M, Smielewski P, Dias C, et al. : Validation of a new minimally invasive intracranial pressure monitoring method by direct comparison with an invasive technique. Acta Neurochir Suppl 122 : 97-100, 2016
- Wang X, Gao Y, Lin J, Rangwala H, Mittu R : A machine learning approach to false alarm detection for critical arrhythmia alarms. 2015 IEEE 14th international conference on machine learning and applications (ICMLA); 2015 Dec 9-11; Miami, FL. New York : IEEE, 2015, pp202-207
- Wang Y, Huang C, Tian R, Yang X : Target temperature management and therapeutic hypothermia in sever neuroprotection for traumatic brain injury: clinic value and effect on oxidative stress. Medicine (Baltimore) 102 : e32921, 2023
- Wang Z, Wang H, Becker R, Rufo J, Yang S, Mace BE, et al. : Acoustofluidic separation enables early diagnosis of traumatic brain injury based on circulating exosomes. Microsyst Nanoeng 7 : 20, 2021
- Whalen S, Schreiber J, Noble WS, Pollard KS : Navigating the pitfalls of applying machine learning in genomics. Nat Rev Genet 23 : 169-181, 2022
- Ye G, Balasubramanian V, Li JK, Kaya M : Machine learning-based continuous intracranial pressure prediction for traumatic injury patients. IEEE J Transl Eng Health Med 10 : 4901008, 2022
- Yokobori S, Hosein K, Burks S, Sharma I, Gajavelli S, Bullock R : Biomarkers for the clinical differential diagnosis in traumatic brain injury--a systematic review. CNS Neurosci Ther 19 : 556-565, 2013
- Young AMH, Guilfoyle MR, Donnelly J, Smielewski P, Agarwal S, Czosnyka M, et al. : Multimodality neuromonitoring in severe pediatric traumatic brain injury. Pediatr Res 83 : 41-49, 2018
- Yu R, Wang S, Xu J, Wang Q, He X, Li J, et al. : Machine learning approaches-driven for mortality prediction for patients undergoing craniotomy in ICU. Brain Inj 35 : 1658-1664, 2021
- Zeiler FA, Iturria-Medina Y, Thelin EP, Gomez A, Shankar JJ, Ko JH, et al. : Integrative neuroinformatics for precision prognostication and personalized therapeutics in moderate and severe traumatic brain injury. Front Neurol 12 : 729184, 2021
- Zhang X, Medow JE, Iskandar BJ, Wang F, Shokoueinejad M, Koueik J, et al. : Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol Meas 38 : R143-R182, 2017
- Zhang X, Yan C, Gao C, Malin BA, Chen Y : Predicting missing values in medical data via XGBoost regression. J Healthc Inform Res 4 : 383-394, 2020