DOI QR코드

DOI QR Code

Comparative research on expansive soil stabilization using ecofriendly materials versus nano-materials

  • 투고 : 2024.04.17
  • 심사 : 2024.07.31
  • 발행 : 2024.08.25

초록

In the present research the durability and geotechnical properties of an expensive clayey soil stabilized by two different compositions of additives were investigated and compared. The first composition consisted of environmentally and ecofriendly materials: BOF steel slag ranging from 0-20% as well as rice husk ash (RHA) ranged 0-16%wt of dry soil. The other composition consisted of relatively new generation of materials including nanomaterials: nano-CaCO3 as well as nano-SiO2. Atterberg limits test, free swell percent test, swelling pressure test and unconfined compressive test were used to assess the stabilizers influences upon expansive soil geotechnical characteristics. Also, the recurrent wet-dry cycles test was exerted on experimental and non-experimental samples for estimating stabilizers effects on durability. According to the results, each of the BOF slag and RHA enhances the expansive soil properties individually, while combination of slag-RHA led to better improvement of the soil properties. Also, the composition of nano-CaCO3 and SiO2 dramatically improved the clay soil operation. The optimum values of slag+RHA were suggested as 20% slag+12% RHA to enhance percent of swelling, pressure of swelling in addition to UCS as much as 95%, 96%, and 370%, respectively. The optimum value for the second stabilizer in this study was found to be 2%nano-SiO2+2% nano-CaCO3 which led to 318% increase in UCS and 86% decrease in swelling pressure.

키워드

참고문헌

  1. Al-Rawas, A.A. (2002), "Microfabric and mineralogical studies on the stabilization of an expansive soil using cement by-pass dust and some types of slags", Can. Geotech. J., 39(5), 1150-1167, https://doi.org/10.1139/t02-046.
  2. Alhassan, M. and Mustapha, A.M. (2007), "Effect of rice husk ash on cement stabilized laterite", J. Pract. Technol., 11, 47-58. https://doi.org/10.17577/IJERTCONV4IS23036.
  3. Bahmani, S.H., Huat, B.B.K., Asadi, A., Farzadnia, N. (2014), "Stabilization of residual soil using SiO2 nanoparticles and cement", Constr. Build. Mater., 64, 350-359, https://doi.org/10.1016/j.conbuildmat.2014.04.086
  4. Barman, D. and Dash, S.K. (2022), "Stabilization of expansive soils using chemical additives: A review", J. Rock Mech. Geotech. Eng., 14, 1319-1342, https://doi.org/10.1016/j.jrmge.2022.02.011.
  5. Barman, D. and Mishra, A.K. (2019), "Influence of salt and initial conditions on the shrinkage limit of bentonite", Int. J. Geotech. Eng., 16(1), 64-73. https://doi.org/10.1080/19386362.2019.1684656.
  6. Brooks, R.M. (2009), "Soil stabilization with fly ash and rice husk ash", Int. J. Res. Rev. Appl. Sci., 1(3), 209-217. https://doi.org/10.1007/978-981-15-6237-2_43.
  7. Changizi, F. and Haddad, A. (2017), "Improving the geotechnical properties of soft clay with nano-silica particles", Proceed. Inst. Civil Eng. Ground Improv., 170, 62-71, https://doi.org/10.1680/jgrim.15.00026.
  8. Chen, R., Congress, S.S.C., Cai, G., Duan, W. and Liu, S. (2021), "Sustainable utilization of biomass waste-rice husk ash as a new solidified material of soil in geotechnical engineering: A review", Constr. Build. Mater., 292, 123219, https://doi.org/10.1016/j.conbuildmat.2021.123219.
  9. Chew, S.H., Kamruzzaman, A.H.M. and Lee, F.H. (2004), "Physicochemical and engineering behavior of cement treated clays", J. Geotech. Geoenviron. Eng., 130(7), 696-706, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696).
  10. Choobbasti, A.J., Ghodrat, H., Vahdatirad, M.J., Firouzian, S., Barari, A., Torabi, M. and Bagherian, A. (2010), "Influence of using rice husk ash in soil stabilization method with lime", Front. Earth Sci., 4(4), 471-480, https://doi.org/10.1007/s11707-010-0138-x.
  11. Choobbasti, A.J., Samakoosh, M.A. and Kutanaei, S.S. (2019), "Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers", Construct. Build. Mater., 211, 1094-1104, https://doi.org/10.1016/j.conbuildmat.2019.03.306.
  12. Cokca, E., Yazici, V. and Ozaydin, V. (2009), "Stabilization of expansive clays using granulated blast furnace slag (GBFS) and GBFS-cement", Geotech. Geol. Eng., 27(4), 489-499, https://doi.org/10.1007/s10706-008-9250-z.
  13. Dayioglu, M., Cetin, B. and Nam, S. (2017), "Stabilization of expansive Belle Fourche shale clay with different chemical additives", Appl. Clay Sci., 146, 56-69, https://doi.org/10.1016/j.clay.2017.05.033.
  14. Deka, S., Dash, S.K. and Sreedeep, S. (2015), "Strength of lime-treated fly ash using bentonite", Geotech. Eng. J., 46(3), 73-81. https://doi.org/10.1007/s12665-013-2719-y.
  15. Deng, L., Zhang, W., Deng, L., Shi, Y., Zi, J., He, X., Zhu, H. (2024), "Forecasting and early warning of shield tunneling-induced ground collapse in rock-soil interface mixed ground using multivariate data fusion and Catastrophe Theory", Eng. Geol., 335, 107548. https://doi.org/10.1016/j.enggeo.2024.107548
  16. Diaz-Lopez, J.L., Cabrera, M., Agrela, F. and Rosales, J. (2023), "Geotechnical and engineering properties of expansive clayey soil stabilized with biomass ash and nanomaterials for its application in structural road layers", Geomech. Energy Environ., 36, 100496. https://doi.org/10.1016/j.gete.2023.100496.
  17. Foong, K.Y., Alengaram, U.J., Jumaat, M.Z. and Mo, K.H. (2015), "Enhancement of mechanical properties of lightweight oil palm shell concrete using rice husk and manufactured sand", J. Zhejiang Univ. Sci. A, 16, 59-69, https://doi.org/10.1631/jzus.A1400175.
  18. Ghorbani, M., Asadi, H. and Abrishamkesh, S. (2019), "Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil", Int. Soil Water Conserv. Res., 7, 258-265. https://doi.org/10.1016/j.iswcr.2019.05.005
  19. Goodarzi, A.R., Akbari, H.R. and Salimi, M. (2016), "Enhanced stabilization of highly expansive clays by mixing cement and silica fume", Appl. Clay Sci., 132, 675-684, https://doi.org/10.1016/j.clay.2016.08.023.
  20. He, H., Shuang, E., Qiao, H., Yang, J., Lin, C., He, C. and Xu, P. (2024), "A general and simple method to disperse 2D nanomaterials for promoting cement hydration", Constr. Build. Mater., 427, 136217. https://doi.org/10.1016/j.conbuildmat.2024.136217
  21. Huang, J., Kogbara, R.B., Hariharan, N., Masad, E.A. and Little, D.N. (2021), "A state-of-the-art review of polymers used in soil stabilization", Constr. Build. Mater., 305, 124685, https://doi.org/10.1016/j.conbuildmat.2021.124685.
  22. Huynh, T.P., Hwang, C.L., Lin, K.L. and Ngo, S.H. (2018), "Effect of residual rice husk ash on mechanical-microstructural properties and thermal conductivity of sodium-hydroxide-activated bricks", Environ. Prog. Sustain, Energy, 37(5), 1647-1656. https://doi.org/10.1002/ep.12848.
  23. Iranpour, B. and Haddad, A. (2016), "The influence of nanomaterials on collapsible soil treatment", Eng. Geolog., 205, 40-53. https://doi.org/10.1016/j.enggeo.2016.02.015.
  24. Jafer, H.M., Atherton, W., Sadique, M.M., Ruddock, F.M. and Loffill, E. (2018), "Development of a new ternary blended cementitious binder produced from waste materials for use in soft soil stabilization", J. Clean. Prod., 172, 516-528, https://doi.org/10.1016/j.jclepro.2017.10.233.
  25. Jittin, V., Bahurudeen, A. and Ajinkya, S.D. (2020), "Utilisation of rice husk ash for cleaner production of different construction products", J. Clean. Prod., 263, 121578, https://doi.org/10.1016/j.jclepro.2020.121578.
  26. Karatai, T.R., Kaluli, J.W., Kabubo, C. and Thiong'o, G. (2016), "Soil stabilization using rice husk ash and natural lime as an alternative to cutting and filling in road construction", J. Constr. Eng. Manag., 143(5), 04016127, https://doi.org/10.1061/(asce)co.1943-7862.0001235.
  27. Khalid, N., Arshad, M.F., Mukri, M. and Mohamad, K. (2015), "Influence of nano-soil particles in soft soil stabilization", Electron. J. Geotech. Eng., 20, 731-738.
  28. Kulkarni, P.P. and Mandal, J.N. (2022), "Strength evaluation of soil stabilized with nano silica- cement mixes as road construction material", Constr. Build. Mater., 314, 125363. https://doi.org/10.1016/j.conbuildmat.2021.125363
  29. Li, J., Cameron, D.A. and Ren, G. (2014), "Case study and back analysis of a residential building damaged by expansive soils", J. Comput. Geotec., 56, 89-99, https://doi.org/10.1016/j.compgeo.2013.11.005.
  30. Liu, G., Meng, H., Song, G., Bo, W., Zhao, P., Ning, B., Xu, X. (2024), "Numerical simulation of wedge failure of rock slopes using three-dimensional discontinuous deformation analysis", Environ. Earth Sci., 83(10), 310. https://doi.org/10.1007/s12665-024-11619-w
  31. Liu, Q., Peng, K., Zeng, J., et al. (2022), "Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM", Adv. Nano Res., 12(6), 549-566, https://doi.org/10.12989/anr.2022.12.6.549.
  32. Lu, D., Liang, J., Du, X., Ma, C., and Gao, Z. (2019), "Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule", Comput. Geotech., 105, 277-290. https://doi.org/10.1016/j.compgeo.2018.10.004
  33. Lu, D., Ma, C., Du Xiuli, Jin, L., and Gong, Q. (2017), "Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept", Int. J. Geomech., 17(2). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729
  34. Lu, D., Meng, F., Zhou, X., Zhuo, Y., Gao, Z., Du Xiuli. (2023), "A dynamic elastoplastic model of concrete based on a modeling method with environmental factors as constitutive variables", J. Eng. Mech., 149(12). https://doi.org/10.1061/JENMDT.EMENG-7206
  35. Lu, Q., Liu, S., Mao, W., Yu, Y., and Long, X. (2024), "A numerical simulation-based ANN method to determine the shear strength parameters of rock minerals in nanoscale", Comput. Geotech., 169, 106175. https://doi.org/10.1016/j.compgeo.2024.106175
  36. Ma, C., Chen, B. and Chen, L. (2018), "Experimental feasibility research on a high-efficiency cement-based clay stabilizer", KSCE J. Civ. Eng., 22(1), 62-72. https://doi.org/10.1007/s12205-017-0782-8.
  37. Ma, K., Peng, Y., Liao, Z., and Wang, Z. (2024), "Dynamic responses and failure characteristics of the tunnel caused by rockburst: An entire process modelling from incubation to occurrence phases", Comput. Geotech., 171, 106340. https://doi.org/10.1016/j.compgeo.2024.106340
  38. Manolikaki, I. and Diamadopoulos, E. (2017), "Ryegrass yield and nutrient status after biochar application in two Mediterranean soils", Arch. Agron. Soil Sci., 63(8), 1093-1107. https://doi.org/ 10.1080/03650340.2016.1267341
  39. Mehmood, K., Baquy, M.A.A. and Xu, R.K. (2018), "Influence of nitrogen fertilizer forms and crop straw biochars on soil exchange properties and maize growth on an acidic ultisol", Arch. Agron. Soil Sci., 64(6), 834-849. https://doi.org/10.1080/03650340.2017.1385062
  40. Meng, T., Qiang, Y., Hu, A., Xu, C. and Lin, L. (2017), "Effect of compound nano-CaCO3 addition on strength development and microstructure of cement-stabilized soil in the marine environment", Constr. Build. Mater., 151, 775-781. https://doi.org/10.1016/j.conbuildmat.2017.06.016
  41. Mohammadi, M., Rajabi, A.M. and Khodaparast, M. (2022), "Experimental and numerical evaluation of the effect of nano calcium carbonate on geotechnical properties of clayey sand soil", KSCE J. Civil Eng., 26, 35-46. https://doi.org/10.1007/s12205-021-1914-8
  42. Mosaberpanah, M.A. and Umar, S.A. (2020), "Utilizing rice husk ash as supplement to cementitious materials on performance of ultra high performance concrete - a review", Mater. Today Sust., 7-8, 100030. https://doi.org/10.1016/j.mtsust.2019.100030.
  43. Narani, S.S., Abbaspour, M., Hosseini, S.M.M., Aflaki, E. and Nejad, M.M. (2020), "Sustainable reuse of waste tire textile fibers (WTTFs) as reinforcement materials for expansive soils: With a special focus on landfill liners/covers", J. Clean. Prod., 247, 119151. https://doi.org/10.1016/j.jclepro.2019.119151.
  44. Nelson, J. and Miller, D.J. (1997), "Expansive Soils: Problems and Practice in Foundation and Pavement Engineering", John Wiley and Sons.
  45. Rajasekaran, G. (2004), "Sulphate attack and ettringite formation in the lime and cement stabilized marine clays", Ocean Eng., 32, 1133-1159. https://doi.org/10.1016/j.oceaneng.2004.08.012.
  46. Rao, D.K., Rao, G.V.V.R. and Pranav, P.R.T. (2012), "A laboratory study on the effect of rice husk ash & lime on the properties of marine clay", Int. J. Eng. Innov. Technol., 2(1), 345-353.
  47. Rocha, J.H.A., Rosas, M.H., Chileno, N.G.C. and Tapia, G.S.C. (2021), "Physical-mechanical assessment for soil-cement blocks including rice husk ash", Case Stud. Constr. Mater., 14, e00548. https://doi.org/10.1016/j.cscm.2021.e00548.
  48. Sakr, M.A., Azzam, W.R., Meguid, M.A., Hassan, A.F. and Ghoneim, H.A. (2022), "Evaluation of micro-metakaolin and ferric chloride solution in stabilising expansive soils", Proc. Inst. Civ. Eng. Ground Improv., 1-13. https://doi.org/10.1680/jgrim.21.00015.
  49. Sani, J.E., Yohanna, P. and Chukwujama, I.A. (2020), "Effect of rice husk ash admixed with treated sisal fibre on properties of lateritic soil as a road construction material", J. King Saud Univ. Eng. Sci., 32, 11-18. https://doi.org/10.1016/j.jksues.2018.11.001.
  50. Satyanarayana, P.V.V., Bhardwaj, C.P. and Patrudu, P.N. (2016), "A study on the engineering properties of expansive soil stabilized with high volume rice husk ash", Int. J. Eng. Sci. Technol., 8(4), 71-76. https://doi.org/10.1007/978-981-99-6229-7_3.
  51. Seenivasan, N.V. (2016), "Stabilization of soil using RHA and waste cement", Int. J. Eng. Trends Technol., 35(6), 270-273. https://doi.org/10.14445/22315381/IJETT-V35P256.
  52. Shankar, A.U., Rai, H.K. and Mithanthaya, R. (2009), "Bio-enzyme stabilized lateritic soil as a highway material", Indian Roads Congr. J., 70(2), 143-151.
  53. Sharma, A.K. and Sivapullaiah, P.V. (2016), "Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer", J. Soils Found., 56(2), 205-212. https://doi.org/10.1016/j.sandf.2016.02.004.
  54. Su, Y., Iyela, P. M., Zhu, J., Chao, X., Kang, S., Long, X. (2024), "A Voronoi-based gaussian smoothing algorithm for efficiently generating RVEs of multi-phase composites with graded aggregates and random pores", Mater. Des., 244, 113159. https://doi.org/10.1016/j.matdes.2024.113159
  55. Sun, Z., Elsworth, D., Cui, G., Li, Y., Zhu, A., Chen, T. (2024), "Impacts of rate of change in effective stress and inertial effects on fault slip behavior: New insights into injection-induced earthquakes", J. Geophys. Res. Solid Earth, 129(2), e2023JB027126. https://doi.org/10.1029/2023JB027126
  56. Taha, M.R. and Taha, O.M.E. (2012), "Influence of nano-material on the expansive and shrinkage soil behavior", J. Nanoparticle Res., 14, 1-13. https://doi.org/10.1007/s11051-012-1190-0
  57. Tang, C.S., Cui, Y.J. and Shi, B. (2011), "Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles", Geoderma, 166(1), 111-118. https://doi.org/10.1016/j.geoderma.2011.07.018.
  58. Tang, C.S., Wang, D.Y., Shi, B. and Li, J. (2016), "Effect of wetting-drying cycles on profile mechanical behavior of soils with different initial conditions", CATENA, 139, 105-116. https://doi.org/10.1016/j.catena.2015.12.015.
  59. Tingle, J.S., Newman, J.K., Larson, S.L., Weiss, C.A. and Rushing, J.F. (2007), "Stabilization mechanisms of nontraditional additives", Transp. Res. Rec., 1, 59-67. https://doi.org/10.3141/1989-49.
  60. Vieira, A.P., Toledo Filho, R.D., Tavares, L.M. and Cordeiro, G.C. (2020), "Effect of particle size, porous structure and content of rice husk ash on the hydration process and compressive strength evolution of concrete", Constr. Build. Mater., 236, 117553. https://doi.org/10.1016/j.conbuildmat.2019.117553.
  61. Vitale, E., Russo, G., Dell'Agli, G., Ferone, C. and Bartolomeo, C. (2017), "Mechanical behaviour of soil improved by alkali activated binders", Environments, 4, 80. https://doi.org/10.3390/environments4040080.
  62. Wild, S., Kinuthia, J.M., Robinson, R.B. and Humphreys, I. (1996), "Effects of ground granulated blast furnace slag (GGBS) on the strength and swelling properties of lime-stabilized kaolinite in the presence of sulphates", Clay Miner., 31, 423-433. https://doi.org/10.1180/claymin.1996.031.3.12.
  63. Wu, Z., Khayat, K.H. and Shi, C. (2017), "Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete", Cem. Concr. Res., 95, 247-256. https://doi.org/10.1016/j.cemconres.2017.02.031.
  64. Yanzhen, Q., Zandi, Y., Rahimi, A., Pourkhorshidi, S., Roco-Videla, A., Khadimallah, M.A., Jameel, M., Ehsan, K. and Assilzadeh, H (2021), "Nano-SiO2 for efficiency of geotechnical properties of fine soils in mining and civil engineering", Adv. Nano Res., 11(1), 301-312. https://doi.org/10.12989/anr.2021.11.3.301.
  65. Zha, F., Liu, S., Du, Y. and Cui, K. (2008), "Behavior of expansive soils stabilized with fly ash", Nat. Hazards, 47(3), 509-523. https://doi.org/10.1007/s11069-008-9236-4.
  66. Zhang, C., Khorshidi, H., Najafi, E., and Ghasemi, M. (2023), "Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review", J. Clean. Prod., 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390
  67. Zhang, S., Tan, D., Zhu, H., Pei, H., and Shi, B. (2024), "Rheological behaviors of Na-montmorillonite considering particle interactions: A molecular dynamics study", J. Rock Mech. Geotech. Eng., In press. https://doi.org/10.1016/j.jrmge.2024.07.003
  68. Zhang, Z., Du, J. and Mahmoudi, T. (2023), "Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil", Adv. Nano Res., 15(4), 355-366. https://doi.org/10.12989/anr.2023.15.4.355.
  69. Zhang, Z.B., Peng, X. and Wang, L.L. (2013), "Temporal changes in shrinkage behavior of two paddy soils under alternative flooding and drying cycles and its consequence on percolation", Geoderma, 192, 12-20. https://doi.org/10.1016/j.geoderma.2012.08.009.
  70. Zomorodian, S.M.A., Moghispour, S., Soleymani, A. and Brendan, C. (2017), "Strength enhancement of clean and kerosene-contaminated sandy lean clay using nanoclay and nanosilica as additives", Appl. Clay Sci., 140, 140-147. https://doi.org/10.1016/j.clay.2017.02.004.