DOI QR코드

DOI QR Code

AR Marker Detection Technique-Based Autonomous Attitude Control for a non-GPS Aided Quadcopter

  • Yeonwoo LEE (Department of Artificial Intelligence Engineering, Mokpo National University) ;
  • Sun-Kyoung KANG (Department of Computer Engineering, Wonkwang University)
  • 투고 : 2024.06.02
  • 심사 : 2024.09.05
  • 발행 : 2024.09.30

초록

This paper addresses the critical need for quadcopters in GPS-denied indoor environments by proposing a novel attitude control mechanism that enables autonomous navigation without external guidance. Utilizing AR marker detection integrated with a dual PID controller algorithm, this system ensures accurate maneuvering and positioning of the quadcopter by compensating for the absence of GPS, a common limitation in indoor settings. This capability is paramount in environments where traditional navigation aids are ineffective, necessitating the use of quadcopters equipped with advanced sensors and control systems. The actual position and location of the quadcopter is achieved by AR marker detection technique with the image processing system. Moreover, in order to enhance the reliability of the attitude PID control, the dual closed loop control feedback PID control with dual update periods is suggested. With AR marker detection technique and autonomous attitude control, the proposed quadcopter system decreases the need of additional sensor and manual manipulation. The experimental results are demonstrated that the quadrotor's autonomous attitude control and operation with the dual closed loop control feedback PID controller with hierarchical (inner-loop and outer-loop) command update period is successfully performed under the non-GPS aided indoor environment and it enhanced the reliability of the attitude and the position PID controllers within 17 seconds. Therefore, it is concluded that the proposed attitude control mechanism is very suitable to GPS-denied indoor environments, which enables a quadcopter to autonomously navigate and hover without external guidance or control.

키워드

참고문헌

  1. Achtelik, M., Bachrach, B. A., Ruijie, H., Samuel, P., & Nicholas, R. (2009). Autonomous navigation and exploration of a quadrotor helicopter in GPS-denied indoor environments. In the First symposium on indoor flight, 2009.
  2. Anjum, A. S. K., Sufian, R. A., Abbas, Z., & Qureshi, I. M. (2016). Attitude Control of Quadcopter Using Adaptive Neuro Fuzzy Control. International Journal of Hybrid Information Technology, 9(4), 139-150.
  3. Cai, G., et al. (2014). A Survey of Small-Scale Unmanned Aerial Vehicles: Recent Advances and Future Development Trends. Unmanned System Journal, 2, 1-25.
  4. Elruby, A. Y., El-Khatib, M. M., El-Amary, N. H., & Hashad, A. I. (2012). Dynamic modeling and control of quadrotor vehicle. In Proceedings of the 15th Int AMME Conference (Vol. 29, p. 31).
  5. Gheorghita, D., Vintu, I., Mirea, L., & Braescu, C. (2015). Quadcopter control system. In IEEE 19th International Conference System Theory, Control and Computing (ICSTCC), 421-426.
  6. Goel, R., Shah, S. M., Gupta, N. K., & Ananthkrishnan, N. (2009). Modeling, simulation and flight testing of an autonomous quadrotor. In Proceedings of ICEAE, 1-7.
  7. Mian, A., & Wang, D. (2008). Modeling and Backstepping-based Nonlinear Control strategy for a 6 DOF Quadrotor Helicopter. Chinese Journal of Aeronautics, 21, 261-268.
  8. Nemati, A., & Kumar, M. (2014). Modeling and control of a single axis tilting quadcopter. In IEEE 2014 American Control Conference (ACC), 3077-3082.
  9. Qi, J., Guan, X., & Lu, X. (2018). An Autonomous Pose Estimation Method of MAV Based on Monocular Camera and Visual Markers. In 2018 13th World Congress on Intelligent Control and Automation (WCICA), 252-257.
  10. Quach, C. H., Nguyen, D. H., Nguyen, V. T., Pham, M. T., & Phung, M. D. (2018). Real-time lane marker detection using template matching with RGB-D camera. In IEEE 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), 152-157.
  11. Razinkova, A., Kang, B., Cho, H., & Jeon, H. (2014). Constant altitude flight control for quadrotor UAVs with dynamic feed-forward compensation. International journal of fuzzy logic and intelligent systems, 14(1), 26-33.
  12. Salih, A. L., Moghavvemi, M., Mohamed, H. A. F., & Gaeid, K. S. (2010). Flight PID controller design for a UAV quadrotor. Scientific Research and Essays, 5(23), 3660-3667.
  13. Seidabad, E. A., et al. (2014). Designing Fuzzy PID Controller for Quadrotor. International Journal of Advanced Research in Computer Science and Technology, 2, 221-227.
  14. Tahir, Z., Jamil, M., Liaqat, S. A., Mubarak, L., Tahir, W., & Gilani, S. O. (2016). Design and development of optimal control system for quadcopter UAV. Indian Journal of Science and Technology, 9(25).