DOI QR코드

DOI QR Code

Complete Genome Sequence of Myxococcus stipitatus KYC2006, a Myxobacterium That Affects the Growth of Photosynthetic Microorganisms

  • Junyeong Park (Department of Microbial Biotechnology, Mokwon University) ;
  • Hyeran Lee (Department of Microbial Biotechnology, Mokwon University) ;
  • Sunjin Lee (Macrogen, Inc.) ;
  • Hyesook Hyun (Department of Microbial Biotechnology, Mokwon University) ;
  • Hyun Gi Koh (Department of Biological and Chemical Engineering, Hongik University) ;
  • Min-Jin Kim (Nakdonggang National Institute of Biological Resources (NNIBR)) ;
  • Buyng Su Hwang (Nakdonggang National Institute of Biological Resources (NNIBR)) ;
  • Bongsoo Lee (Department of Microbial Biotechnology, Mokwon University)
  • Received : 2024.04.04
  • Accepted : 2024.05.08
  • Published : 2024.06.28

Abstract

Here, we report the whole-genome sequence of Myxococcus stipitatus KYC2006, a bacterium whose conditioned media affect the growth of photosynthetic microorganisms such as cyanobacteria and microalgae. The genome of M. stipitatus KYC2006 was assembled into a 10,311,252 bp circular genome with 68.5% of GC content, containing 7,949 protein-coding genes, 12 rRNA genes, and 79 tRNA genes. Further analysis revealed that there are 29 secondary metabolite biosynthetic gene clusters in M. stipitatus KYC2006. These results suggest that M. stipitatus KYC2006 holds a significant potential as a resource for research on the development of biocontrol agents and value-added products from photosynthetic microorganisms.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT, Korea government (2021R1F1A105127511) and a grant from the Nakdonggang National Institute of Biological Resources (NNIBR), funded by the Ministry of Environment(MOE) of the Republic of Korea (NNIBR20243111). The authors are also grateful to Prof. Kyungyun Cho (Hoseo University) for providing the M. stipitatus KYC2006.

References

  1. Kaiser D, Robinson M, Kroos L. 2010. Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb. Perspect. Biol. 2: a000380.
  2. Sharma G, Khatri I, Subramanian S. 2016. Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T. Genome Biol. Evol. 29: 2520-2529.
  3. Munoz-Dorado J, Marcos-Torres FJ, Garcia-Bravo E, Moraleda-Munoz A, Perez J. 2016. Myxobacteria: Moving, killing, feeding, and surviving together. Front. Microbiol. 26: 781.
  4. Wrotniak-Drzewiecka W, Brzezinska AJ, Dahm H, Ingle AP, Rai M. 2016. Current trends in myxobacteria research. Ann. Microbiol. 66: 17-33.
  5. Herrmann J, Fayad AA, Muller R. 2017. Natural products from myxobacteria: novel metabolites and bioactivities. Nat. Prod. Rep. 34: 135-160.
  6. Hyun H, Cho K. 2018. Secondary metabolites of myxobacteria. Korean J. Microbiol. 54: 175-187.
  7. Development of a quantitative induction method for Chondromyces crocatus fruiting body formation. Korean J. Microbiol. 50: 173-178.
  8. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9: e112963.
  9. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. 2017. A large-scale valuation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286.
  10. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures, and visualization. Nucleic Acids Res. 51: 46-50.