DOI QR코드

DOI QR Code

Development of a Lower Limb Magnet System Capable of Polarity Conversion

극성변환이 가능한 하지의지 자석락 시스템 개발

  • Beom-ki Hong (Korea Orthopedics and Rehabilitation Engineering Center) ;
  • Seung-Gi Kim (Korea Orthopedics and Rehabilitation Engineering Center) ;
  • Se-Hoon Park (Korea Orthopedics and Rehabilitation Engineering Center)
  • 홍범기 (근로복지공단 재활공학연구소) ;
  • 김승기 (근로복지공단 재활공학연구소) ;
  • 박세훈 (근로복지공단 재활공학연구소)
  • Received : 2024.06.22
  • Accepted : 2024.06.29
  • Published : 2024.06.30

Abstract

The suspension device that connects the prosthetic leg and the residual limb allows lower limb amputees to wear prosthetic limbs, and is the most sensitive part when using prosthetic limbs as it is always in contact with the residual limb not only while walking but also in everyday life. In this paper, using the principles of attraction and repulsion of permanent magnets, we developed a magnetic lock suspension device that can fix the amputees and prosthetic legs of lower limb amputees by changing the polarity of the magnet. The operation method of the magnetic lock is that when neodymium magnets are placed on the left and right as NNSS based on a non-magnetic brass core, the magnetic force flows outward beyond the brass core using the adsorption member as a medium to generate bonding force. When rotated 90 degrees, the magnet moves to NSNS. The principle is that as the position moves, the magnetic force flows inward and cancels out.Based on this, we conducted a bonding test using tensile strength and a short-term comparative evaluation of the prosthesis with the shuttle lock suspension system, which was a comparison group, to verify reliability and evaluate satisfaction with the prototype. As a result, the tensile strength exceeding the appropriate bonding strength was confirmed, and the magnetic lock showed higher satisfaction than the shuttle lock. In the future, we plan to conduct long-term ADL clinical trials for commercialization and develop a product that can be distributed to actual amputees.

의족과 절단단을 연결해주는 현가장치는 하지 절단 장애인이 의족착용을 가능하게 하며 보행뿐만 아니라 일상생활 중에서도 항상 절단단과 접촉되어 있어 의족 사용 중 가장 민감하게 느끼는 부분이다. 본 논문에서는 영구자석의 인력과 척력의 원리를 이용하여 자석의 극성변화로 하지 절단 장애인들의 절단단과 의족을 고정할 수 있는 자석락 현가장치를 개발하였다. 자석락의 작동 방식은 비자성체인 황동심을 기준으로 좌우에 네오디움 자석을 NNSS로 배치 시 자력은 흡착부재를 매개체로 하여 황동심을 넘어 외부로 흘러 결합력이 발생하며, 90도 회전 시 자석은 NSNS로 위치 이동하며 자력이 내부로 흘러 상쇄되는 원리이다. 이를 바탕으로 인장강도를 통한 결합력 시험 및 비교군인 셔틀락 현가장치와의 단기적인 의족 비교 평가를 수행하여 시제품에 대한 신뢰성 검증 및 만족도를 평가하였다. 그 결과 적정 결합력을 상회하는 인장강도를 확인하였으며 자석락이 셔틀락 대비 높은 만족도를 나타냈다. 추후 제품화를 위한 장기적인 ADL 임상시험을 수행해 실제 절단 장애인들에게 보급 가능한 제품으로 개발하고자 한다.

Keywords

Acknowledgement

본 연구는 보건복지부의 재원으로 한국보건산업진흥원의 보건의료기술연구개발사업 지원을 받아 수행된 연구임(과제고유번호: HJ22C0003).

References

  1. Ministry of Health and Welfare. 2020. Registration status of persons with disabilities, http://www.mohw.go.kr/. [accessed: 17-6-2024]
  2. B. E. Lawson, H. A. Varol, A. Huff, E. Erdemir, and M. Goldfarb, "Control of stair ascent and descent with a powered transfemoral prosthesis," IEEE Trans. of Rehabilitation Engineering, vol. 21, no. 3, pp. 446-473, 2013, doi: 10.1109/TNSRE.2012.2225640.
  3. G. Y. Gyeong, J. G. Kim, and Y. S. Lee, "The Structure of a Powered Knee Prosthesis based on a BLDC Motor and Impedance Control using Torque Estimation on Free Swing," Journal of Institute of Control Robotics and Systems, vol. 21, no. 5. pp. 407-412, 2015, doi: 10.5302/j.icros.2015.15.9018.
  4. J. W. Lee, H. S. Woo, D. Y. Ahn, M. Jo, H. Yi, and K. Y. Kim, "Development of an Electronically Controlled Knee-Type Prosthetic Leg with a 4-Bar Linkage Structure for Lower Limb Amputee," The Journal of Korea Robotics Society, vol. 19, no. 2, pp. 159-168, doi: 10.9728/dcs.2018.19.7.1405.
  5. W. Alcocer, L. Vela, A. Blanco, J. Gonzalez, and M. Oliver,"Major Trends in the Developmentof Ankle Rehabilitation Devices," Int. J. DYNA, vol. 79, no. 176, pp. 45-55, 2012.
  6. Ottobock shuttle lock device, Model: 6A20=10 https://www.ottobock.com/ [accessed:29-May-2024].
  7. J. S. Song, S. M. Lee, and G. C. Cha, "Study on Developments of Prosthetic Socket and Locking Device of New Material," Journal of Korean Society for Prosthetics and Orthotics, vol. 9, no. 1, pp. 36-43, 2015.
  8. M. S. Son,"Manufacturing a Trans-tibial Prosthesis with Silicone Liner and Shuttle Lock,"Journal of Korean Society for Prosthetics and Orthotics, vol. 6, no. 1, pp. 36-43, 2012.
  9. C. H. Song, "Fabricating Method Using Custom Liner and Correct Application," Journal of Korean Society for Prosthetics and Orthotics, vol. 6, no. 1, pp. 44-52, 2012.
  10. Dynamics simulation program, https://hexagon.com/products/product-groups/computer-aided-engineering-software/adams [accessed: 17-6-2024].
  11. H. C. Kim, H. S. Cho, Y. H. Jang, H. J. Shin, H. S. Park, and Y. J. Cho. "Development of bio-mimetic prosthetic foot for transfemoral amputee,"Journal of Rehabilitation Welfare Engineering & Assistive Technology, vol. 17. no. 4, pp. 281-288, 2023, doi:10.21288/resko.2023.17.4.281.
  12. Article 163 of the Rules on Occupational Safety and Health Standards, https://www.law.go.kr, [accessed: 10-6-2024].
  13. Korean standard body type, https://sizekorea.kr/ [accessed: 7-6-2024].
  14. Neodym standard table, https://kr.misumi-ec.com/ [accessed: 17-6-2024].
  15. INSTRON 8511 tester, https://www.instron.com/en/products/testing-systems/out-of-production-systems/dynamic [accessed:15-6-2024].
  16. W. S. Seong, J. H. Kim, and D. H. Jeong, "The Reliability of the K-PEQ(Korean Prosthesis Evaluation Questionnaire) in Lower Extremity Amputees." Journal of Digital Contents Society, vol. 19 no. 7, pp. 1405-1412, 2018, doi: 10.9728/dcs.2018.19.7.1405.