DOI QR코드

DOI QR Code

Predicting Soccer Players' Wage Grades Using Big Data and Artificial Intelligence

빅데이터 및 인공지능을 활용한 축구선수 연봉등급 예측

  • 정현성 (서강대 메타버스전문대학원) ;
  • 김진화 (서강대 메타버스전문대학원) ;
  • 현대원 (서강대 메타버스전문대학원)
  • Received : 2024.07.19
  • Accepted : 2024.08.20
  • Published : 2024.08.28

Abstract

This study proposes a new method for predicting the wage grades of soccer players using big data and artificial intelligence. Predicting the salaries of soccer players is a crucial task that involves accurately assessing players' performance and potential, and reflecting this in their salaries to enhance the economic efficiency of the soccer industry. This research analyzes player ability data provided by FIFA 22 and employs various big data and artificial intelligence techniques to predict players' salary grades. Key methodologies used include decision trees, artificial neural networks, random forests, and boosting, which were utilized to compare the accuracy of the salary prediction models. The results show that the random forest and boosting methods exhibited the highest prediction accuracy. This study demonstrates the process and utility of using big data and artificial intelligence technologies to predict soccer players' salary grades, offering a new perspective on the soccer industry.

본 연구는 빅데이터와 인공지능을 활용하여 축구선수의 연봉등급을 예측하는 새로운 방법을 제안한다. 축구선수의 연봉 예측은 선수의 성과와 잠재력을 정확하게 평가하고, 이를 연봉에 반영함으로써 축구 산업의 경제적 효율성을 높이는 중요한 과제이다. 본 연구는 FIFA 22에서 제공하는 선수 능력치 데이터를 분석하여, 다양한 빅데이터 및 인공지능 기법을 통해 선수의 연봉등급을 예측한다. 주요 연구 방법으로는 의사결정나무, 인공신경망, 랜덤 포레스트, 부스팅 등을 활용하였으며, 이를 통해 연봉등급을 예측하는 모델의 정확도를 비교 분석하였다. 연구 결과, 랜덤 포레스트와 부스팅 기법이 가장 높은 예측 정확도를 보였다. 이 연구는 빅데이터와 인공지능을 이용해 축구선수의 연봉등급을 예측하고, 축구 산업에 새로운 관점을 제공한다.

Keywords

Acknowledgement

This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the Graduate School of Metaverse Convergence support program(IITP-2023-RS-2022-00156318) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation)

References

  1. Noh, E. S. (2016). A Study of KBO Professional Baseball Game Prediction using Artificial Neural Networks. Graduate School of Software at Soongsil University.
  2. Han, J. S., Jung, D. H., & Kim, J. J. (2022). Predicting the OPS of KBO Batters through Big Data Analysis Using Machine Learning. International Next-generation Convergence Technology Association, 6(1), 12-18. https://doi.org/10.33097/JNCTA.2022.06.01.12
  3. Jung, Y. H. (2020). Soccer match betting analysis based on score prediction. Konkuk University.
  4. Kim, S. M., & Yoo, K. S. (2020). Analysis of the Relationship between a Batter's Performance and Discomfort Index using Big Data: focusing on the Number of Pitches and On Base Percentage. Journal of Industrial Convergence, 18(4), 61-66. https://doi.org/10.22678/JIC.2020.18.4.061
  5. Shin, M. S. (2003). A Comparative Study on the Salary Systems of Korean Professional Soccer and Baseball. Korean Society for Sport Management, 7(2), 141-155.
  6. Kang, H. C., Han, S. T., Choi, J. H., Lee, S. G., Kim, E. S., & Um, I. H. (2014). Data Mining Methodology: A Case Study Approach Using SAS Enterprise Miner. Paju: Freedom Academy.
  7. Kim, G. S. (2015). Big Data Analysis and Meta-analysis. Seoul: HanaNarae.
  8. Alfaro, E., Garcia, N., Gamez, M., & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems, 45, 110-122. https://doi.org/10.1016/j.dss.2007.12.002
  9. Yoon, H. S. (2023). An Integrated Model of k-Means and Neural Network - For House Price Prediction. Kyungsung University, 39(2), 34-41. https://doi.org/10.22793/INDINN.2023.39.2.004
  10. Hong, G. H. (2020). Prediction and Analysis of Suicidal Thoughts among Male and Female Adolescents Based on Random Forest Machine Learning Algorithm. Korean Academy of Social Welfare, 72(3), 157-180. https://doi.org/10.20970/kasw.2020.72.3.007
  11. Park, S. Y., & Jung, H. W. (2020). Exploring Predictive Factors for Middle School Students' Career Decisions: Application of Machine Learning Techniques. Asia Journal of Education, 21(3), 727-753. https://doi.org/10.15753/aje.2020.09.21.3.727
  12. Lim, H. R., & Hong, S. P. (2023). Analysis of Factors Predicting Graduate School Enrollment among University Graduates Using Random Forest. The Korean Society for the Study of Career Education, 36(1).
  13. Jung, J. W., Kim, J. Y., & Oh, S. G. (2023). Comparative Study of Waste Plastic Data Pattern Classifiers Using Boosting Algorithm. Korean Institute of Intelligent System, 33(3), 242-248. https://doi.org/10.5391/JKIIS.2023.33.3.242
  14. Park, S. Y. (2022). Malicious Insider Detection Techniques Using Boosting Method of Ensemble Learning. Korea Institute of Information Security & Cryptology, 32(2), 267-277.
  15. Alfaro, E., Gamez, M., & Garcia, N. (2007). Multiclass corporate failure prediction by AdaBoost.MI. Advanced Economic Research, 13, 301-312.
  16. Kim, J. G., Kim, H. G., & Choi, S. W. (2023). A kNN Algorithm-Based Driver Facial Identification Model Applicable to Car-Sharing Services. Korean Institute of Information and Communication Engineering, 27(1), 658-660.
  17. Lim, H. C., & Lee, S. S. (2022). Interference Mitigation Techniques Among Ultrasound Sensors Using KNN Algorithm. Institute of Korean Electrical and Electronics Engineers, 26(2), 169-175.
  18. H. S. Choi, Y. H. Cho. (2019). Analysis of Security Problems of Deep Learning Technology. Journal of the Korea Convergence Society, 10(5), 9-16. https://doi.org/10.15207/JKCS.2019.10.5.009
  19. H. J. Mooi, G. H. Kim. (2019). A Survey on Deep Learning based Face Recognition for User Authentication. Journal of Industrial Convergence, 17(3), 23-29. https://doi.org/10.22678/JIC.2019.17.3.023