Acknowledgement
This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the Graduate School of Metaverse Convergence support program(IITP-2023-RS-2022-00156318) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation)
References
- Noh, E. S. (2016). A Study of KBO Professional Baseball Game Prediction using Artificial Neural Networks. Graduate School of Software at Soongsil University.
- Han, J. S., Jung, D. H., & Kim, J. J. (2022). Predicting the OPS of KBO Batters through Big Data Analysis Using Machine Learning. International Next-generation Convergence Technology Association, 6(1), 12-18. https://doi.org/10.33097/JNCTA.2022.06.01.12
- Jung, Y. H. (2020). Soccer match betting analysis based on score prediction. Konkuk University.
- Kim, S. M., & Yoo, K. S. (2020). Analysis of the Relationship between a Batter's Performance and Discomfort Index using Big Data: focusing on the Number of Pitches and On Base Percentage. Journal of Industrial Convergence, 18(4), 61-66. https://doi.org/10.22678/JIC.2020.18.4.061
- Shin, M. S. (2003). A Comparative Study on the Salary Systems of Korean Professional Soccer and Baseball. Korean Society for Sport Management, 7(2), 141-155.
- Kang, H. C., Han, S. T., Choi, J. H., Lee, S. G., Kim, E. S., & Um, I. H. (2014). Data Mining Methodology: A Case Study Approach Using SAS Enterprise Miner. Paju: Freedom Academy.
- Kim, G. S. (2015). Big Data Analysis and Meta-analysis. Seoul: HanaNarae.
- Alfaro, E., Garcia, N., Gamez, M., & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems, 45, 110-122. https://doi.org/10.1016/j.dss.2007.12.002
- Yoon, H. S. (2023). An Integrated Model of k-Means and Neural Network - For House Price Prediction. Kyungsung University, 39(2), 34-41. https://doi.org/10.22793/INDINN.2023.39.2.004
- Hong, G. H. (2020). Prediction and Analysis of Suicidal Thoughts among Male and Female Adolescents Based on Random Forest Machine Learning Algorithm. Korean Academy of Social Welfare, 72(3), 157-180. https://doi.org/10.20970/kasw.2020.72.3.007
- Park, S. Y., & Jung, H. W. (2020). Exploring Predictive Factors for Middle School Students' Career Decisions: Application of Machine Learning Techniques. Asia Journal of Education, 21(3), 727-753. https://doi.org/10.15753/aje.2020.09.21.3.727
- Lim, H. R., & Hong, S. P. (2023). Analysis of Factors Predicting Graduate School Enrollment among University Graduates Using Random Forest. The Korean Society for the Study of Career Education, 36(1).
- Jung, J. W., Kim, J. Y., & Oh, S. G. (2023). Comparative Study of Waste Plastic Data Pattern Classifiers Using Boosting Algorithm. Korean Institute of Intelligent System, 33(3), 242-248. https://doi.org/10.5391/JKIIS.2023.33.3.242
- Park, S. Y. (2022). Malicious Insider Detection Techniques Using Boosting Method of Ensemble Learning. Korea Institute of Information Security & Cryptology, 32(2), 267-277.
- Alfaro, E., Gamez, M., & Garcia, N. (2007). Multiclass corporate failure prediction by AdaBoost.MI. Advanced Economic Research, 13, 301-312.
- Kim, J. G., Kim, H. G., & Choi, S. W. (2023). A kNN Algorithm-Based Driver Facial Identification Model Applicable to Car-Sharing Services. Korean Institute of Information and Communication Engineering, 27(1), 658-660.
- Lim, H. C., & Lee, S. S. (2022). Interference Mitigation Techniques Among Ultrasound Sensors Using KNN Algorithm. Institute of Korean Electrical and Electronics Engineers, 26(2), 169-175.
- H. S. Choi, Y. H. Cho. (2019). Analysis of Security Problems of Deep Learning Technology. Journal of the Korea Convergence Society, 10(5), 9-16. https://doi.org/10.15207/JKCS.2019.10.5.009
- H. J. Mooi, G. H. Kim. (2019). A Survey on Deep Learning based Face Recognition for User Authentication. Journal of Industrial Convergence, 17(3), 23-29. https://doi.org/10.22678/JIC.2019.17.3.023