과제정보
이 논문은 2022년 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 연구임(KRIT-CT-22-081, 무기체계 CBM+ 특화연구센터).
참고문헌
- Breiman, L., Random Forests, Machine Learning, 2001, Vol. 45, No. 1, pp. 5-32. https://doi.org/10.1023/A:1010933404324
- Chae, S.G., Kim, G.R., Bae, A.-Y., and Bae, S.J., Failure Diagnosis and Prediction for a Thermal Power Plant Generator using fastICA, Journal of Applied Reliability, 2021, Vol. 21, No. 4, pp. 341-351. https://doi.org/10.33162/JAR.2021.12.21.4.341
- Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W. P., SMOTE: synthetic minority over-sam-pling technique, JAIR, 2002, Vol. 16, pp. 321-357. https://doi.org/10.1613/jair.953
- Chen, T. and Guestrin, C., XGBoost: A scalable tree boosting system, in Proc. of 22nd ACM SIGKDD Int. Conf. on Knowl. Discovery and Data Mining, Aug. 2016, pp. 785-794.
- Choi, E.-J., Han, J.-H., and Hong, S.-K., Performance Improvement of Transfer Learning-based Motor Fault Diagnosis Using Mix-up Data Considering Data Imbalance, KIEE, 2023, Vol. 72, No. 2, pp. 255-262. https://doi.org/10.5370/KIEE.2023.72.2.255
- Donoho, D.L., High-dimensional Data Analysis: The Curses and Blessings of Dimensionality, AMS Conference on Math Challenges of the 21st Century, 2000 pp. 1-32.
- Fleeman, E.L., Tactical Missile Design, American Institute of Aeronautics and Astronautics Reston, 2nd Ed., 2006.
- Friedman, J.H., Greedy function approximation: A gradient boosting machine, Ann. of Statist., 2001, Vol. 29, No. 5, pp. 1189-1232. https://doi.org/10.1214/aos/1013203451
- Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., and Bing, G., Learningfromclass-imbalanceddata: Reviewof methodsand applications, Expert systems with applications, 2017, Vol. 73, No. 1, pp. 220-239. https://doi.org/10.1016/j.eswa.2016.12.035
- Kim, S., Ejike, A.U., and Hur, J., A Study on Fault Classification of Solenoid Pumps based on Multi-Layer Perceptron, Journal of Applied Reliability, 2021, Vol. 21, No. 1, pp. 12-19. https://doi.org/10.33162/JAR.2021.3.21.1.12
- Kim, S.J., Khan, A., Sohn, J.W., and Kim, H.S., Deep Learning based Fault Diagnosis in Laminated Composites using Augmented Data, Spring Conference of the Korean Society of Mechanical Engineers, 2022, Busan, Korea, pp. 374-375.
- Lee, S., Park, S., Lee, S., Lee, H., Yu, S., and Lee, K., A Comparative Study on the Methodology of Failure Detection of Reefer Containers Using PCA and Feature Importance, Journal of The Korea Convergence Society, 2022, Vol. 13, No. 3, pp. 23-31. https://doi.org/10.15207/JKCS.2022.13.03.023
- Lee, S.H. and Kim, Y.S., A Pre-processing Process Using TadGAN-based Time-series Anomaly Detection, Journal of Korean Society for Quality Management, 2022, Vol. 50, No. 3, pp. 459-471.
- Lee, Y., Yong, H., Jung, J., and Kim, J., Development of Dormant Missile Health Monitoring Methodology based on Environmental Data, Journal of Applied Reliability, 2022, Vol. 22, No. 3, pp. 219-228. https://doi.org/10.33162/JAR.2022.9.22.3.219
- Mao, W., He, L., Yan, Y., and Wang, J., Online Sequential Prediction of Bearings Imbalanced Fault Diagnosis by Extreme Learning Machine, MSSP, 2017, Vol. 83, pp. 450-473. https://doi.org/10.1016/j.ymssp.2016.06.024
- Menardi, G. and Torelli, N., Training and assessing classification rules with imbalanced data, Data Mining and Knowledge Discovery, 2014, Vol. 28, No. 1, pp. 92-122. https://doi.org/10.1007/s10618-012-0295-5
- Mourtzis, D., Vlachou, E., and Milas, N., ndustrial Big Data as a Result of IoT Adoption in Manufacturing, Procedia CIRP, 2016, Vol. 55, pp. 290-295. https://doi.org/10.1016/j.procir.2016.07.038
- Pearson, K., On Lines and Planes of Closest Fit to Systems of Points in Space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, Vol. 2, No. 11, pp. 559-572. https://doi.org/10.1080/14786440109462720
- Seo, C.-Y., Suh, Y.-J., and Kim, D.-J., Study on Fault Detection of a Gas Pressure Regulator Based on Machine Learning Algorithms, JKSCI, 2020, Vol. 25, No. 4, pp. 19-27.
- Seo, Y., Lee, K., Lee, Y., and Kim, J., Reliability Prediction Based on Field Failure Data of Guided Missile, Journal of Applied Reliability, 2018, Vol. 18, No. 3, pp. 250-259. https://doi.org/10.33162/JAR.2018.09.18.3.250
- Si, J., Jeong, J., Jeong, M., and Kim, S., Anomaly Detection of Injection Molding using Statistics-based Feature Selection and Generative Adversarial Learning, JKIIT, 2023, Vol. 21, No. 4, pp. 11-20. https://doi.org/10.14801/jkiit.2023.21.4.11
- Tibshirani, R., Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, Vol. 58, No. 1, pp. 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
- Wei, J., Huang, H., Yao, L., Hu, Y., Fan, Q., and Huang, D., New imbalanced bearing fault diagnosis method based on Sample-characteristic Oversampling TechniquE (SCOTE) and multi-class LS-SVM, Applied Soft Computing, 2021, Vol. 101, p. 107043.