Acknowledgement
This work was supported by the Vehicle Industry Technology Development Program funded by the Ministry of Trade, Industry and Energy (Grant No. 20018958) and a grant (RS-2021-KA162618) from the Korea Agency for Infrastructure Technology Advancement, Korea.
References
- Brandon, N.P., Kurban, Z.: Clean energy and the hydrogen economy. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 375(2098), 20160400 (2017). https://doi.org/10.1098/rsta.2016.0400
- Alexandra, M.O., Rebecca, R.B., Yushan, Y.: A green hydrogen economy for a renewable energy society. Curr. Opin. Chem. Eng. 33, 100701 (2021). https://doi.org/10.1016/j.coche.2021.100701
- Jin, K., Ruan, X., Yang, M., Xu, M.: A hybrid fuel cell power system. IEEE Trans. Ind. Electron. 56(4), 1212-1222 (2009). https://doi.org/10.1109/TIE.2008.2008336
- Yao, G., Du, C., Ge, Q., Jiang, H., Wang, Y., Ait-Ahmed, M., Moreau, L.: Traffic-condition-prediction-based HMA-FIS energy-management strategy for fuel-cell electric vehicles. Energies 12, 4426 (2019). https://doi.org/10.3390/en12234426
- Tran, H.N., Le, T.-T., Jeong, H., Kim, S., Choi, S.: A 300 kHz, 63 kW/L ZVT DC-DC converter for 800-V fuel cell electric vehicles. IEEE Trans. Power Electron. 37(3), 2993-3006 (2022). https://doi.org/10.1109/TPEL.2021.3-108815
- Dill, N.J., General Motors Corporation: Fuel cell stack coolant conductivity monitoring circuit. United States patent US 6,838,201, Jan. 4, 2005
- Hortop, M.K., General Motors Corporation: Fuel cell stack coolant conductivity sensor using differential voltage measurements. United States patent US 6,582,840. Jun. 24, 2003
- Palma, L., Todorovic, M.H., Enjeti, P.N.: Analysis of common-mode voltage in utility-interactive fuel cell power conditioners. IEEE Trans. Ind. Electron. 56(1), 20-27 (2009). https://doi.org/10.1109/TIE.2008.2004382
- Hong, T., Geng, Z., Qi, K., Zhao, X., Ambrosio, J., Gu, D.: A wide range unidirectional isolated DC-DC converter for fuel cell electric vehicles. IEEE Trans. Ind. Electron. 68(7), 5932-5943 (2021). https://doi.org/10.1109/TIE.2020.2998758
- Park, S.M., Jeong, W.C., Ryoo, H.-J.: 55 kW DC-DC converter based on LCC resonance for inverter driving of fuel cell vehicle. In: 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Korea, pp. 272-275 (2021). https://doi.org/10.23919/ICEMS52562.2021.9634206.
- Son, S.-H., et al.: Optimal design of LCC resonant converter with phase shift control for wide input/output voltage ranges in fuel cell system. IEEE Trans. Ind. Electron. 71(4), 3537-3547 (2024). https://doi.org/10.1109/TIE.2023.3279549
- Kim, Y.-J., Lee, J.-Y.: Full-bridge + SRT hybrid DC/DC converter for a 6.6-kW EV on-board charger. IEEE Trans. Veh. Technol. 65(6), 4419-4428 (2016). https://doi.org/10.1109/TVT.2016.2535237
- Choi, J., Kim, Y., Kim, J., Kwon, H., Lee, J.: Design of a 6.6 kW charger based on an SRT converter applying a parallel structure of IGBT and Si-MOSFET. J. Power Electron. 23(4), 607-616 (2023). https://doi.org/10.1007/s43236-023-00604-4
- Lee, B., Kim, J., Kim, S., Lee, J.: A PWM SRT DC/DC converter for 6.6-kW EV onboard charger. IEEE Trans. Ind. Electron. 63, 894-902 (2016) https://doi.org/10.1109/TIE.2015.2480384
- Roy, J., Hassan, R., Sabate, J.: Series resonant converter for pulsating power operating at fxed frequency. In: 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2022, pp. 1-6. https://doi.org/10.1109/ECCE50734.2022.9947558
- Kim, J.-W., Barbosa, P.: PWM-controlled series resonant converter for universal electric vehicle charger. IEEE Trans. Power Electron. 36(12), 13578-13588 (2021). https://doi.org/10.1109/TPEL.2021.3072991
- McLyman, W.T.: Transformer and Inductor Design Handbook. CRC Press, Boca Raton (2011)