DOI QR코드

DOI QR Code

35 kW isolated fuel-cell DC-DC converter design based on PWM resonant converter with hybrid switch structure

  • Received : 2024.01.08
  • Accepted : 2024.06.02
  • Published : 2024.08.20

Abstract

This paper presents the design of a 35 kW isolated fuel-cell DC-DC converter (FDC) with a hybrid switch structure. By utilizing a circuit structure and pulse-width modulation (PWM) method that enables the use of insulated-gate bipolar transistors (IGBTs), the price is reduced without a significant efficiency degradation even at frequencies of tens of kHz when compared to using all silicon carbide metal-oxide-semiconductor field-effect transistors (SiC-MOSFETs). The proposed converter is based on a PWM resonant converter, which has good switching characteristics and low-voltage stresses on the switching devices. However, it suffers from high cost owing to heavy current stresses. This problem can be solved using a hybrid switch structure that adopts IGBTs in the leading-leg switches. Considering the wide variations in the input and output voltages, the design of the main parameters, the selection of power semiconductors considering the switching characteristics, and the frequency selection method are presented. The feasibility of the proposed FDC design is verified using a prototype implemented with an output power of 35 kW (input voltage=330-610 V and output voltage=450-850 V) and a switching frequency of 40 kHz.

Keywords

Acknowledgement

This work was supported by the Vehicle Industry Technology Development Program funded by the Ministry of Trade, Industry and Energy (Grant No. 20018958) and a grant (RS-2021-KA162618) from the Korea Agency for Infrastructure Technology Advancement, Korea.

References

  1. Brandon, N.P., Kurban, Z.: Clean energy and the hydrogen economy. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 375(2098), 20160400 (2017). https://doi.org/10.1098/rsta.2016.0400
  2. Alexandra, M.O., Rebecca, R.B., Yushan, Y.: A green hydrogen economy for a renewable energy society. Curr. Opin. Chem. Eng. 33, 100701 (2021). https://doi.org/10.1016/j.coche.2021.100701
  3. Jin, K., Ruan, X., Yang, M., Xu, M.: A hybrid fuel cell power system. IEEE Trans. Ind. Electron. 56(4), 1212-1222 (2009). https://doi.org/10.1109/TIE.2008.2008336
  4. Yao, G., Du, C., Ge, Q., Jiang, H., Wang, Y., Ait-Ahmed, M., Moreau, L.: Traffic-condition-prediction-based HMA-FIS energy-management strategy for fuel-cell electric vehicles. Energies 12, 4426 (2019). https://doi.org/10.3390/en12234426
  5. Tran, H.N., Le, T.-T., Jeong, H., Kim, S., Choi, S.: A 300 kHz, 63 kW/L ZVT DC-DC converter for 800-V fuel cell electric vehicles. IEEE Trans. Power Electron. 37(3), 2993-3006 (2022). https://doi.org/10.1109/TPEL.2021.3-108815
  6. Dill, N.J., General Motors Corporation: Fuel cell stack coolant conductivity monitoring circuit. United States patent US 6,838,201, Jan. 4, 2005
  7. Hortop, M.K., General Motors Corporation: Fuel cell stack coolant conductivity sensor using differential voltage measurements. United States patent US 6,582,840. Jun. 24, 2003
  8. Palma, L., Todorovic, M.H., Enjeti, P.N.: Analysis of common-mode voltage in utility-interactive fuel cell power conditioners. IEEE Trans. Ind. Electron. 56(1), 20-27 (2009). https://doi.org/10.1109/TIE.2008.2004382
  9. Hong, T., Geng, Z., Qi, K., Zhao, X., Ambrosio, J., Gu, D.: A wide range unidirectional isolated DC-DC converter for fuel cell electric vehicles. IEEE Trans. Ind. Electron. 68(7), 5932-5943 (2021). https://doi.org/10.1109/TIE.2020.2998758
  10. Park, S.M., Jeong, W.C., Ryoo, H.-J.: 55 kW DC-DC converter based on LCC resonance for inverter driving of fuel cell vehicle. In: 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Korea, pp. 272-275 (2021). https://doi.org/10.23919/ICEMS52562.2021.9634206.
  11. Son, S.-H., et al.: Optimal design of LCC resonant converter with phase shift control for wide input/output voltage ranges in fuel cell system. IEEE Trans. Ind. Electron. 71(4), 3537-3547 (2024). https://doi.org/10.1109/TIE.2023.3279549
  12. Kim, Y.-J., Lee, J.-Y.: Full-bridge + SRT hybrid DC/DC converter for a 6.6-kW EV on-board charger. IEEE Trans. Veh. Technol. 65(6), 4419-4428 (2016). https://doi.org/10.1109/TVT.2016.2535237
  13. Choi, J., Kim, Y., Kim, J., Kwon, H., Lee, J.: Design of a 6.6 kW charger based on an SRT converter applying a parallel structure of IGBT and Si-MOSFET. J. Power Electron. 23(4), 607-616 (2023). https://doi.org/10.1007/s43236-023-00604-4
  14. Lee, B., Kim, J., Kim, S., Lee, J.: A PWM SRT DC/DC converter for 6.6-kW EV onboard charger. IEEE Trans. Ind. Electron. 63, 894-902 (2016) https://doi.org/10.1109/TIE.2015.2480384
  15. Roy, J., Hassan, R., Sabate, J.: Series resonant converter for pulsating power operating at fxed frequency. In: 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2022, pp. 1-6. https://doi.org/10.1109/ECCE50734.2022.9947558
  16. Kim, J.-W., Barbosa, P.: PWM-controlled series resonant converter for universal electric vehicle charger. IEEE Trans. Power Electron. 36(12), 13578-13588 (2021). https://doi.org/10.1109/TPEL.2021.3072991
  17. McLyman, W.T.: Transformer and Inductor Design Handbook. CRC Press, Boca Raton (2011)