A Comprehensive Review of Congenital Disorders of Glycosylation

선천성 당화 장애에 대한 전반적 고찰

  • Sukdong Yoo (Department of Pediatrics, Pusan National University School of Medicine)
  • 유석동 (부산대학교 의과대학 소아청소년과학교실)
  • Published : 2024.06.30

Abstract

Congenital Disorders of Glycosylation (CDG) represent a complex group of inherited metabolic disorders resulting from defects in multiple pathways of glycosylation, a critical biochemical process for protein functionality and cellular communication. This review provides a comprehensive overview of CDG, including its history, epidemiology, classification, diagnostic complexities, and therapeutic developments. Despite advancements in understanding CDG and identifying over 160 subtypes, challenges remain due to the diverse clinical manifestations and multi-systemic involvement. Targeted therapy is available for only a few CDGs, but promising treatments are being investigated. Ongoing research is vital to developing targeted treatments and improving patient outcomes.

선천성 당화장애(CDG)는 당화 과정의 결함으로 인해 발생하는 다양한 유전 대사 장애 질환을 포함한다. 당화는 단백질 접힘, 안정성 및 세포 간 신호전달에 필수적인 생화학적 과정이다. CDG는 1980년대에 처음 발견된 이후로 분자생물학과 유전학의 발전에 따라 현재까지 163개의 아형이 발견되었고 트랜스페린 등전점 전기영동이 선별검사로 사용되고 있으며 유전학적 진단기법의 발달로 CDG의 진단이 확연히 늘었으며, 다양한 선천성 당화장애의 결함에 대한 진단 기법이 연구되고 있다. CDG의 치료는 주로 대증요법에 의존하며, 일부 아형에서 단당류, 망간, 우라신, 피리독신 등의 경구 보충요법과 간 이식, 조혈모세포 이식이 사용되고 있으며 약리학적 샤페론, 유전자 치료, 그리고 약물 재배치 연구가 진행되고 있다. CDG 환자들의 진단과 치료에 대한 지속적인 연구와 협력이 필요하다.

Keywords

References

  1. Ferreira CR, Rahman S, Keller M, Zschocke J, Group IA, Abdenur J, et al. An international classification of inherited metabolic disorders (ICIMD). J Inherit Metab Dis 2021;44:164-77. https://doi.org/10.1002/jimd.12348
  2. Lipinski P, Tylki-Szymanska A. Congenital Disorders of Glycosylation: What Clinicians Need to Know? Front Pediatr 2021;9:715151.
  3. Defaus S, Gupta P, Andreu D, Gutierrez-Gallego R. Mammalian protein glycosylation--structure versus function. Analyst 2014;139:2944-67. https://doi.org/10.1039/C3AN02245E
  4. Ondruskova N, Cechova A, Hansikova H, Honzik T, Jaeken J. Congenital disorders of glycosylation: Still "hot" in 2020. Biochim Biophys Acta Gen Subj 2021;1865:129751.
  5. Verheijen J, Tahata S, Kozicz T, Witters P, Morava E. Therapeutic approaches in Congenital Disorders of Glycosylation (CDG) involving N-linked glycosylation: an update. Genet Med 2020;22:268-79. https://doi.org/10.1038/s41436-019-0647-2
  6. Jaeken J, Vanderschueren-Lodeweyckx M, Casaer P, Snoeck L, Corbeel L, Eggermont E, et al. Familial psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TBG-deficiency, increased serum arylsulphatase A and increased CSF protein: a new syndrome?: 90. Pediatr Res 1980;14:179.
  7. Denecke J. Biomarkers and diagnosis of congenital disorders of glycosylation. Expert Opin Med Diagn 2009;3:395-409. https://doi.org/10.1517/17530050902878023
  8. Ng BG, Freeze HH. Perspectives on glycosylation and its congenital disorders. Trends Genet 2018;34:466-76. https://doi.org/10.1016/j.tig.2018.03.002
  9. Francisco R, Brasil S, Poejo J, Jaeken J, Pascoal C, Videira PA, et al. Congenital disorders of glycosylation (CDG): state of the art in 2022. Orphanet J Rare Dis 2023;18:329.
  10. Jaeken J, Hennet T, Matthijs G, Freeze HH. CDG nomenclature: time for a change! Biochim Biophys Acta 2009;1792:825-6. https://doi.org/10.1016/j.bbadis.2009.08.005
  11. Peanne R, De Lonlay P, Foulquier F, Kornak U, Lefeber DJ, Morava E, et al. Congenital disorders of glycosylation (CDG): Quo vadis? Eur J Med Genet 2018;61:643-63. https://doi.org/10.1016/j.ejmg.2017.10.012
  12. Lipinski P, Bogdanska A, Tylki-Szymanska A. Congenital disorders of glycosylation: Prevalence, incidence and mutational spectrum in the Polish population. Mol Genet Metab Rep 2021;27:100726.
  13. Magalhae APPSd, Burin MG, Souza CFMd, de Bitencourt FH, Sebastiao FM, Silva TO, et al. Transferrin isoelectric focusing for the investigation of congenital disorders of glycosylation: analysis of a ten-year experience in a Brazilian center. J Pediatr (Rio J) 2020;96:710-6. https://doi.org/10.1016/j.jped.2019.05.008
  14. Matthijs G, Schollen E, Bjursell C, Erlandson A, Freeze H, Imtiaz F, et al. Mutations in PMM2 that cause congenital disorders of glycosylation, type Ia (CDG-Ia). Hum Mutat 2000;16:386-94. https://doi.org/10.1002/1098-1004(200011)16:5<386::AID-HUMU2>3.0.CO;2-Y
  15. Piedade A, Francisco R, Jaeken J, Sarkhail P, Brasil S, Ferreira CR, et al. Epidemiology of congenital disorders of glycosylation (CDG)-overview and perspectives. J Rare Dis 2022;1:3.
  16. Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol 2019;15:346-66. https://doi.org/10.1038/s41581-019-0129-4
  17. Willems A. Genetic disorders in sialic acid metabolism-a biochemical perspective: Radboud University Nijmegen; 2019.
  18. Marques-da-Silva D, Dos Reis Ferreira V, Monticelli M, Janeiro P, Videira P, Witters P, et al. Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis 2017;40:195-207. https://doi.org/10.1007/s10545-016-0012-4
  19. Marques-da-Silva D, Francisco R, Webster D, Dos Reis Ferreira V, Jaeken J, Pulinilkunnil T. Cardiac complications of congenital disorders of glycosylation (CDG): a systematic review of the literature. J Inherit Metab Dis 2017;40:657-72. https://doi.org/10.1007/s10545-017-0066-y
  20. Boyer SW, Johnsen C, Morava E. Nutrition interventions in congenital disorders of glycosylation. Trends Mol Med 2022;28:463-81. https://doi.org/10.1016/j.molmed.2022.04.003
  21. Brasil S, Allocca M, Magrinho SCM, Santos I, Raposo M, Francisco R, et al. Systematic Review: Drug Repositioning for Congenital Disorders of Glycosylation (CDG). Int J Mol Sci 2022;23.
  22. Liguori L, Monticelli M, Allocca M, Hay Mele B, Lukas J, Cubellis MV, et al. Pharmacological chaperones: a therapeutic approach for diseases caused by destabilizing missense mutations. Int J Mol Sci 2020;21:489.
  23. Balakrishnan B, Altassan R, Budhraja R, Liou W, Lupo A, Bryant S, et al. AAV-based gene therapy prevents and halts the progression of dilated cardiomyopathy in a mouse model of phosphoglucomutase 1 deficiency (PGM1-CDG). Transl Res 2023;257:1-14. https://doi.org/10.1016/j.trsl.2023.01.004
  24. Harms H, Zimmer KP, Kurnik K, Bertele-Harms R, Weidinger S, Reiter K. Oral mannose therapy persistently corrects the severe clinical symptoms and biochemical abnormalities of phosphomannose isomerase deficiency. Acta Paediatr 2002;91:1065-72. https://doi.org/10.1111/j.1651-2227.2002.tb00101.x
  25. Wong SY-W, Gadomski T, Van Scherpenzeel M, Honzik T, Hansikova H, Holmefjord KSB, et al. Oral D-galactose supplementation in PGM1-CDG. Genet Med 2017;19:1226-35. https://doi.org/10.1038/gim.2017.41
  26. Witters P, Tahata S, Barone R, Ounap K, Salvarinova R, Gronborg S, et al. Clinical and biochemical improvement with galactose supplementation in SLC35A2-CDG. Genet Med 2020;22:1102-7. https://doi.org/10.1038/s41436-020-0767-8
  27. Park JH, Hogrebe M, Gruneberg M, DuChesne I, von der Heiden AL, Reunert J, et al. SLC39A8 deficiency: a disorder of manganese transport and glycosylation. Am J Hum Genet 2015;97:894-903. https://doi.org/10.1016/j.ajhg.2015.11.003
  28. Morelle W, Potelle S, Witters P, Wong S, Climer L, Lupashin V, et al. Galactose supplementation in patients with TMEM165-CDG rescues the glycosylation defects. J Clin Endocrinol Metab 2017;102:1375-86. https://doi.org/10.1210/jc.2016-3443
  29. Hidalgo A, Ma S, Peired AJ, Weiss LA, Cunningham-Rundles C, Frenette PS. Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene. Blood 2003;101:1705-12. https://doi.org/10.1182/blood-2002-09-2840
  30. Park JH, Hogrebe M, Fobker M, Brackmann R, Fiedler B, Reunert J, et al. SLC39A8 deficiency: biochemical correction and major clinical improvement by manganese therapy. Genet Med 2018;20:259-68. https://doi.org/10.1038/gim.2017.106
  31. Brasil S, Pascoal C, Francisco R, Marques-da-Silva D, Andreotti G, Videira PA, et al. CDG therapies: from bench to bedside. Int J Mol Sci 2018;19:1304.
  32. Joshi C, Kolbe DL, Mansilla MA, Mason S, Smith RJ, Campbell CA. Ketogenic diet-a novel treatment for early epileptic encephalopathy due to PIGA deficiency. Brain Dev 2016;38:848-51. https://doi.org/10.1016/j.braindev.2016.04.004
  33. Klcovansky J, Morkrid L, Moller T. Heart transplantation in a child with congenital disorder of glycosylation. J Heart Lung Transplant 2016;35:1048-9. https://doi.org/10.1016/j.healun.2016.05.007
  34. Janssen MC, De Kleine RH, Van Den Berg AP, Heijdra Y, Van Scherpenzeel M, Lefeber DJ, et al. Successful liver transplantation and long-term follow-up in a patient with MPI-CDG. Pediatrics 2014;134:e279-e83. https://doi.org/10.1542/peds.2013-2732
  35. Jansen JC, Cirak S, Van Scherpenzeel M, Timal S, Reunert J, Rust S, et al. CCDC115 deficiency causes a disorder of Golgi homeostasis with abnormal protein glycosylation. Am J Hum Genet 2016;98:310-21. https://doi.org/10.1016/j.ajhg.2015.12.010
  36. Stray-Pedersen A, Backe PH, Sorte HS, Morkrid L, Chokshi NY, Erichsen HC, et al. PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet 2014;95:96-107. https://doi.org/10.1016/j.ajhg.2014.05.007
  37. Verheijen J, Wong SY, Rowe JH, Raymond K, Stoddard J, Delmonte OM, et al. Defining a new immune deficiency syndrome: MAN2B2-CDG. J Allergy Clin Immunol 2020;145:1008-11. https://doi.org/10.1016/j.jaci.2019.11.016
  38. Yuste-Checa P, Brasil S, Gamez A, Underhaug J, Desviat LR, Ugarte M, et al. Pharmacological chaperoning: A potential treatment for PMM2-CDG. Hum Mutat 2017;38:160-8. https://doi.org/10.1002/humu.23138
  39. Martinez-Monseny AF, Bolasell M, Callejon-Poo L, Cuadras D, Freniche V, Itzep DC, et al. AZATAX: Acetazolamide safety and efficacy in cerebellar syndrome in PMM2 congenital disorder of glycosylation (PMM2-CDG). Ann Neurol 2019;85:740-51. https://doi.org/10.1002/ana.25457
  40. Nguyen TTM, Murakami Y, Wigby KM, Baratang NV, Rousseau J, St-Denis A, et al. Mutations in PIGS, encoding a GPI transamidase, cause a neurological syndrome ranging from fetal akinesia to epileptic encephalopathy. Am J Hum Genet 2018;103:602-11. https://doi.org/10.1016/j.ajhg.2018.08.014
  41. Matsumoto C, Mori-Yoshimura M, Noguchi S, Endo Y, Oya Y, Murata M, et al. Phenotype of a limb-girdle congenital myasthenic syndrome patient carrying a GFPT1 mutation. Brain Dev 2019;41:470-3. https://doi.org/10.1016/j.braindev.2018.12.002
  42. Cossins J, Belaya K, Hicks D, Salih MA, Finlayson S, Carboni N, et al. Congenital myasthenic syndromes due to mutations in ALG2 and ALG14. Brain 2013;136:944-56. https://doi.org/10.1093/brain/awt010
  43. Almeida AM, Murakami Y, Baker A, Maeda Y, Roberts IA, Kinoshita T, et al. Targeted therapy for inherited GPI deficiency. N Engl J Med 2007;356:1641-7. https://doi.org/10.1056/NEJMoa063369